Phasic dopamine as a prediction error of intrinsic and extrinsic reinforcements driving both action acquisition and reward maximization: A simulated robotic study

An important issue of recent neuroscientific research is to understand the functional role of the phasic release of dopamine in the striatum, and in particular its relation to reinforcement learning. The literature is split between two alternative hypotheses: one considers phasic dopamine as a reward prediction error similar to the computational TD-error, whose function is to guide an animal to maximize future rewards; the other holds that phasic dopamine is a sensory prediction error signal that lets the animal discover and acquire novel actions. In this paper we propose an original hypothesis that integrates these two contrasting positions: according to our view phasic dopamine represents a TD-like reinforcement prediction error learning signal determined by both unexpected changes in the environment (temporary, intrinsic reinforcements) and biological rewards (permanent, extrinsic reinforcements). Accordingly, dopamine plays the functional role of driving both the discovery and acquisition of novel actions and the maximization of future rewards. To validate our hypothesis we perform a series of experiments with a simulated robotic system that has to learn different skills in order to get rewards. We compare different versions of the system in which we vary the composition of the learning signal. The results show that only the system reinforced by both extrinsic and intrinsic reinforcements is able to reach high performance in sufficiently complex conditions. © 2013 Elsevier Ltd.

Publication type: 
Articolo
Author or Creator: 
Mirolli, Marco
Santucci, Vieri G.
Baldassarre, Gianluca
Publisher: 
Pergamon,, New York , Stati Uniti d'America
Source: 
Neural networks 39 (2013): 40–51. doi:10.1016/j.neunet.2012.12.012
info:cnr-pdr/source/autori:Mirolli, Marco; Santucci, Vieri G.; Baldassarre, Gianluca/titolo:Phasic dopamine as a prediction error of intrinsic and extrinsic reinforcements driving both action acquisition and reward maximization: A simulated robotic study/
Date: 
2013
Resource Identifier: 
http://www.cnr.it/prodotto/i/310593
https://dx.doi.org/10.1016/j.neunet.2012.12.012
info:doi:10.1016/j.neunet.2012.12.012
http://www.scopus.com/record/display.url?eid=2-s2.0-84872777521&origin=inward
Language: 
Eng
ISTC Author: 
Marco Mirolli's picture
Real name: