

Planning with
Neural Networks and

Reinforcement Learning

Gianluca Baldassarre

A thesis submitted for the degree of
Ph.D. in Computer Science

Department of Computer Science,
University of Essex,

Colchester, United Kingdom, 2002

2

Abstract

This thesis presents the design, implementation and investigation of some predictive-planning
controllers built with neural-networks and inspired by Dyna-PI architectures (Sutton, 1990).
Dyna-PI architectures are planning systems based on actor-critic reinforcement learning
methods and a model of the environment. The controllers are tested with a simulated robot
that solves a stochastic path-finding landmark navigation task.

A critical review of ideas and models proposed by the literature on problem solving,
planning, reinforcement learning, and neural networks precedes the presentation of the
controllers. The review isolates ideas relevant to the design of planners based on neural
networks.

A “neural forward planner” is implemented that, unlike the Dyna-PI architectures, is
taskable in a strong sense. This planner is capable of building a “partial policy” focussed on
around efficient start-goal paths, and is capable of deciding to re-plan if “unexpected” states
are encountered. Planning iteratively generates “chains of predictions” starting from the
current state and using the model of the environment. This model is made up by some neural
networks trained to predict the next input when an action is executed.

A “neural bidirectional planner” that generates trajectories backward from the goal and
forward from the current state is also implemented. This planner exploits the knowledge
(image) on the goal, further focuses planning around efficient start-goal paths, and produces a
quicker updating of evaluations.

In several experiments the generalisation capacity of neural networks proves important
for learning but it also causes problems of interference. To deal with these problems a
modular neural architecture is implemented, that uses a mixture of experts network for the
critic, and a simple hierarchical modular network for the actor.

The research also implements a simple form of neural abstract planning named “coarse
planning”, and investigates its strengths in terms of exploration and evaluations’ updating.
Some experiments with coarse planning and with other controllers suggest that discounted
reinforcement learning may have problems dealing with long-lasting tasks.

3

To my family,
To Simona,

To every curious spirit intrigued by the beauty and mystery of this world.

4

Acknowledgements

I thank my supervisor Prof. Jim Doran for his support in the difficult moments of the PhD, for
his hard criticism that helped me to trace interesting problems, for his precious contribution of
ideas, and for his continuous stimulation to rethink implicit assumptions and abandon
preconceptions. This thesis would not exist without him.

I thank the members of my supervisory board, Jeff Reynolds, Paul Scott, and Sam Steel
for their criticism, their suggestions about interesting direction of research to develop and for
their efforts to keep my work on schedule. Special thanks go to Paul Scott (my supervisor for
the last two months of my PhD) for having helped me with the corrections of the final version
of the thesis.

I thank the Heads of Department during my PhD, Ann De Roeck and Martin Henson, and
the Department Staff and the administrative personnel for having guaranteed me a friendly
and stimulating environment while doing my research.

I thank the Department and all the people that have had a role in the decision process that
brought to the assignment of a full time scholarship for my research.

I thank James Adam and David Hales for the stimulating conversations we have had
together, and for their precious help in the preparation of this thesis. I thank all the other
friends in the Department for their warm support.

I thank the friends working at the Italian National Research Council, and in particular
Prof. Domenico Parisi, Stefano Nolfi, Raffaele Calabretta, and Andrea Di Ferdinando, for
their precious contribution of ideas, help and support.

I thank my family and Simona's family, and in particular my mother, father and sister, for
their unlimited help, support, and love. I thank all my relatives, spread in Italy and in the
world, for their affection.

I thank my friends of Italy, the “friends of flat 8” and the other friends at Essex
University, for the fun we have had together, and for their friendship and support during the
PhD.

I thank Simona for her simple and pure love.

5

Table of contents

1 INTRODUCTION 12

1.1 The Objective of the Thesis 13
1.1.1 Why Neural-Network Planning Controllers? 13
1.1.2 Why a Robot and a Noisy Environment? Why a simulated robot? 15
1.1.3 Reinforcement Learning, Dynamic Programming and Dyna Architectures 16
1.1.4 Ideas from Problem Solving and Logical Planning 18
1.1.5 Why Dyna-PI Architectures (Reinforcement Learning + Model of the Environment)? 19
1.1.6 Stochastic Path-Finding Landmark Navigation Problems 20

1.2 Overview of the Controllers and Outline of the Thesis 22
1.2.1 Overview of the Controllers Implemented in this Research 22
1.2.2 Outline of the Thesis and Problems Addressed Chapter by Chapter 23

PART 1: CRITICAL LITERATURE REVIEW AND ANALYSIS OF CONCEPTS
USEFUL FOR NEURAL PLANNING

2 PROBLEM SOLVING, SEARCH, AND STRIPS PLANNING 28

2.1 Planning as a Searching Process: Blind-Search Strategies 28
2.1.1 Critical Observations 29

2.2 Planning as a Searching Process: Heuristic-Search Strategies 29
2.2.1 Critical Observations 29

2.3 STRIPS Planning: Partial Order Planner 30
2.3.1 Situation Space and Plan Space 30
2.3.2 Partial Order Planner 31
2.3.3 Critical Observations 32

2.4 STRIPS Planning: Conditional Planning, Execution Monitoring, Abstract Planning 32
2.4.1 Conditional Planning 33
2.4.2 Execution Monitoring and Replanning 33
2.4.3 Abstract Planning 34
2.4.4 Critical Observations 34

2.5 STRIPS Planning: Probabilistic and Reactive Planning 34
2.5.1 BURIDAN Planning Algorithm 35
2.5.2 Reactive Planning and Universal Plans 35
2.5.3 Decision theoretic planning 35
2.5.4 Maes' Planner 37
2.5.5 Critical Observations 37

2.6 Navigation and Motion Planning Through Configuration Spaces 38

3 MARKOV DECISION PROCESSES AND DYNAMIC PROGRAMMING 40

3.1 The Problem Domain Considered Here: Stochastic Path-Finding Problems 40

3.2 Critical Observations on Dynamic Programming and Heuristic Search 42

6

3.3 Dyna Framework and Dyna-PI Architecture 43
3.3.1 Critical Observations 44

3.4 Prioritised Sweeping and Trajectory Sampling 45
3.4.1 Critical Observations 46

4 NEURAL-NETWORKS 47

4.1 What is a Neural Network? 47
4.1.1 Critical Observations 48

4.2 Critical Observations: Feed-Forward Networks and Mixture of Experts Networks 48

4.3 Neural Networks for Prediction Learning 50
4.3.1 Critical Observations 51

4.4 Properties of Neural Networks and Planning 51
4.4.1 Generalisation, Noise Tolerance, and Catastrophic Interference 51
4.4.2 Prototype Extraction 52
4.4.3 Learning 53

4.5 Planning with Neural Networks 53
4.5.1 Activation Diffusion Planning 54
4.5.2 Neural Planners Based on Gradient Descent Methods 56

5 UNIFYING CONCEPTS 58

5.1 Learning, Planning, Prediction and Taskability 58
5.1.1 Learning of Behaviour 59
5.1.2 Taskable Planning 60
5.1.3 Taskability: Reactive and Planning Controllers 61
5.1.4 Taskability and Dyna-PI 63

5.2 A Unified View of Heuristic Search, Dynamic Programming, and Activation Diffusion 63

5.3 Policies and Plans 65

PART 2: DESIGNING AND TESTING NEURAL PLANNERS

6 NEURAL ACTOR-CRITIC REINFORCEMENT LEARNING 69

6.1 Introduction: Basic Neural Actor-Critic Controller and Simulations' Scenarios 69

6.2 Scenarios of Simulations and the Simulated Robot 70

6.3 Architectures and Algorithms 72

6.4 Results and Interpretations 76
6.4.1 Functioning of the Matcher 76
6.4.2 Performance of the Controller: The Critic and the Actor 77
6.4.3 Aliasing Problem and Parameters' Exploration 81
6.4.4 Parameter Exploration 83
6.4.5 Why the Contrasts? Why no more than the Contrasts? 84

6.5 Temporal Limitations of Discounted Reinforcement Learning 85

7

6.6 Conclusion 89

7 REINFORCEMENT LEARNING, MULTIPLE GOALS, MODULARITY 91

7.1 Introduction 91

7.2 Scenario of Simulations: An Asynchronous Multi-Goal Task 92

7.3 Architectures and Algorithms: Monolithic and Modular Neural-Networks 93

7.4 Results and Interpretation 96

7.5 Limitations of the Controllers 100

7.6 Conclusion 100

8 THE NEURAL FORWARD PLANNER 101

8.1 Introduction: Taskability, Planning and Acting, Focussing 101

8.2 Scenario of the Simulations 103

8.3 Architectures and Algorithms: Reactive and Planning Components 104
8.3.1 The Reactive Components of the Architecture 104
8.3.2 The Planning Components of the Architecture 105

8.4 Results and Interpretation 108
8.4.1 Taskable Planning vs. Reactive Behaviour 108
8.4.2 Focussing, Partial Policies and Replanning 111
8.4.3 Neural Networks for Prediction: “True” Images as Attractors? 112

8.5 Limitations of the Neural Forward Planner 115

8.6 Conclusion 115

9 THE NEURAL BIDIRECTIONAL PLANNER 117

9.1 Introduction: More Efficient Exploration 117

9.2 Scenario of Simulations 118

9.3 Architectures and Algorithms 119
9.3.1 The Reactive Components of the Architecture 119
9.3.2 The Planning Components of the Architecture: Forward Planning 119
9.3.3 The Planning Components of the Architecture: Bidirectional Planning 121

9.4 Results and Interpretation 123
9.4.1 Common Strengths of the Forward-Planner and the Bidirectional Planner 123
9.4.2 The Forward Planner Versus the Bidirectional Planner 124

9.5 Limitations of the Neural Bidirectional Planner 126

9.6 A New “Goal Oriented Forward Planner” (Not Implemented) 126

9.7 Conclusion 127

8

10 NEURAL NETWORK PLANNERS AND MULTI-GOAL TASKS 128

10.1 Introduction: Neural Planners, Interference and Modularity 128

10.2 Scenario: Again the Asynchronous Multi-Goal Task 129

10.3 Architectures and Algorithms 129
10.3.1 Modular Reactive Components 129
10.3.2 Neural Modular Forward Planner 130
10.3.3 Neural Modular Bidirectional Planner 131

10.4 Results and Interpretation 132
10.4.1 Modularity and Interference 132
10.4.2 Taskability 134
10.4.3 From Planning To Reaction 134
10.4.4 The Forward Planner Versus the Bidirectional Planner 135

10.5 Limitations of the Modular Planners 137

10.6 Conclusion 137

11 COARSE PLANNING 138

11.1 Introduction: Abstraction, Macro-actions and Coarse Planning 138

11.2 Scenario of Simulations: A Simplified Navigation Task 139

11.3 Architectures and Algorithms: Coarse Planning with Macro-actions 140

11.4 Results and Interpretation 142
11.4.1 Reinforcement Learning at a Coarse Level 142
11.4.2 The Advantages of Coarse Planning 143
11.4.3 Predicting at a Coarse Level 145
11.4.4 Coarse Planning, Discount Coefficient and Time Limitations of Reinforcement Learning 146

11.5 Limitations of the Neural Coarse Planner 149

11.6 Conclusion 150

12 CONCLUSION AND FUTURE WORK 152

12.1 Conclusion: What Have We Learned from This Research? 152
12.1.1 Ideas for Neural-Network Reinforcement-Learning Planning 152
12.1.2 Landmark Navigation, Reinforcement Learning and Neural Networks 153
12.1.3 A New Neural Forward Planner 153
12.1.4 A New Neural Bidirectional Planner 155
12.1.5 Common Structure, Interference, and Modular Networks 156
12.1.6 Coarse Planning and Time Limits of Reinforcement Learning 157

12.2 A List of the Major “Usable” Insights Delivered 158

12.3 Future Work 159

13 APPENDICES 162

13.1 Blind-Search and Heuristic-Search Strategies 162

9

13.1.1 Blind-Search Strategies 162
13.1.2 Heuristic-Search Strategies 163

13.2 Markov Decision Processes, Reinforcement Learning and Dynamic Programming 165
13.2.1 Markov Decision Processes 165
13.2.2 Markov Property and Partially Observable Markov Decision Problems 167
13.2.3 Reinforcement Learning 168
13.2.4 Approximating the State or State-Action Evaluations 168
13.2.5 Searching the Policy with the Q'* and Q'π evaluations 170
13.2.6 Actor-Critic Model 171
13.2.7 Macro-actions and Options 172
13.2.8 Function Approximation and Reinforcement Learning 174
13.2.9 Dynamic Programming 174
13.2.10 Asynchronous Dynamic Programming 176
13.2.11 Trial-Based Real-Time Dynamic Programming and Heuristic Search 176

13.3 Feed-Forward Architectures and Mixture of Experts Networks 178
13.3.1 Feed-Forward Architectures and Error Backpropagation Algorithm 178
13.3.2 Mixture of Experts Neural Networks 179
13.3.3 The Generalisation Property of Neural Networks 181

14 REFERENCES 182

14.1 Candidate's Publications During the PhD Research 182

14.2 References 183

10

List of Mathematical Symbols

β Termination function of options (theory of options)
ℜ ℵ Sets of real and natural numbers
∃, ∀, ∈, ⊂, ⊆ Set theory: “there is at least one…”, “for every…”, “is an element of …”,

“is contained in…”, “is strictly contained in…”.
σ[.], σ'[.] Sigmoidal function and its derivative (argument: unit's activation potential)
: , → “Such that…”, functional relation between two sets
[., .] (., .) Intervals, including or excluding the interval extreme values
[.] Square brackets used to indicate the arguments of a function or operator
{., ., ., .} List of elements of a set
| Operator used to express conditional probabilities, as in Pr[a | b]
∂f[x]/∂x Derivative of function f[.] with regard to the variable x
A Set of actions
a, at, awin An action, action at time t, selected action
argmax [.] Argument of maximisation operator (arguments: variable, function)
bl Actor's gating network: activation potential relative to output unit l
ck Correctness of evaluator's expert k
dlq Actor's expert l: activation potential relative to action unit q
E[.] Expectation operator (argument: a stochastic variable)
Ek Output error of a neural network for the training pattern k
et TD-error relative to the estimate V'[.] formulated at time t
f, f[.] Pseudo-variable or transfer function of a neural unit (argument: activation

potential)
gk A-priori weight (or “probability”) of modular evaluator's expert k
hk A-posteriori weight (or “probability”) of modular evaluator's expert k
I Input set (theory of options)
k Index of time when an option terminates (theory of options), or index of

training pattern (feed-forward neural networks), or index of expert
(mixture of experts neural network)

l[.], L[.] Likelihood function and log-likelihood function (argument: an event)
ln[.] Natural logarithm function (argument: a positive real number)
max.[.] Maximisation operator (arguments: variable, function)
mlq Actor's expert l: action merit relative to action unit q
mq Actor: merit of action q
MTP MR Model of environment: state transition function and reward function
n Often used to indicate the number of elements of a set
nl Actor's gating network: activation of output unit l
o An option (theory of options)
O[.] Complexity asymptotic analysis of algorithms: number of steps taken by

the algorithm to find a solution. Argument: parameter(s) that characterises
the size of the input

ok Evaluator's gating network: output of unit k
p Activation potential of one unit of neural network
Pa

ss' Probability of getting to state s' if action a is executed at state s
Pr[.] Probability (argument: an event)
Q*[.] Optimal Q function (argument: a state of the world or perception)

11

Q[.] Q function (argument: a state of the world or perception)
Q'[.] Estimate of Q function (argument: a state of the world or perception)
ra

ss' Average reward obtained by executing action a at state s and passing to
state s'

rt Reward at time t
s, s' Two particular states
S, Sg Set of states, set of goal states
sg si Goal state and start/initial state
st State at time t
t Index of time
ulj Actor's gating network: weight relative to output unit l and feature unit j
v Vector of output units
V*[.] Optimal value function (argument: a state of the world or perception)
V[.] Evaluation function (argument: a state of the world or perception)
V'[.] Estimate of evaluation function (argument: a state of the world or

perception)
vd Evaluator's expert k: desired output
vk Evaluator's expert k: activation of output unit k.
vq Feed-forward network: activation of output unit q
Vπ[.] Evaluation function depending on the action policy π (argument: a state of

the world or perception)
w Vectors or array of weights
wji Weight between input unit I and feature (or hidden) unit j
wkj Evaluator's expert k: weight relative to feature unit j
X The set of possible input vectors
x, xt An activation vector of input units, activation vector at time t
xI Activation of input unit I
y Activation vector of feature (or hidden) units
yj Activation of feature (or hidden) unit j
z Vector or array of weights
zkj Evaluator's gating network: weight relative to gating unit k and feature unit

j
γ Discount coefficient
η, ζ, ξ, ν Learning rates
π, π* A given policy (or the policy of an option within the theory of opitons),

optimal policy
π[. , .] Policy function: probability of action policy (arguments: state and action)
Σf[.] Sum in f
µ Global policy (theory of options)

12

1 Introduction

This introduction illustrates the objective of the thesis' research and the motivations behind it
(section 1.1). It also introduces the specific issues and problems addressed in the thesis and
presents an outline of the controllers proposed (section 1.2).

Figure 1.1: Development of the ideas presented in the thesis.

Main objective of the thesis:
Designing and investigating taskable predictive-planning controllers

implemented with neural-networks

Inspired by Dyna-PI architectures
(≈ Reinforcement learning +

model of environment)

Simulated robot engaged in
stochastic path-finding navigation problems

(single-goal and asynchronous multi-goal tasks)

Requirements for the controllers…

New neural planning
controllers

Capable of controlling
a simulated robot

that interacts with a noisy environment

Areas where the thesis… …has produced insights

Generalisation,
interference, modular

neural networks

Properties of
neural networks and

planning

Abstract planning with
neural networks,

time limits of discounted
reinforcement learning

Planning, taskability,
Dyna-PI architectures

Dyna-PI architectures:
focussing, forward and

backward planning,
acting and (re)planning.

Tested with…

Ideas from
problem solving and

logical planning

13

1.1 The Objective of the Thesis

Figure 1.1 presents a graphical summary of the ideas and problems investigated in the thesis.
The main objective of the thesis can be defined as follows: Designing and investigating
taskable predictive-planning controllers implemented with neural-networks.

The terms used in the definition of the thesis's objective are going to be precisely
specified in s. 4.1 (neural networks) and 5.1 (taskable predictive planning). However, at least
some approximate definitions are necessary for this introduction. “Predictive planning” can be
defined as any information processing carried out by an agent, that constrains the agent’s
future course of action and is based on the agent's capacity to predict the consequences of its
actions. A controller is “taskable” if it is capable of pursuing a goal (“desired state”) assigned
to it for the first time, on the basis of the use of previously acquired goal-independent
information (cf. s. 5.1). “Neural networks” are systems made of simple units that exchange
signals in parallel through a network of connections, and process the signals received in
simple ways (cf. s. 4.1).
In pursuing the thesis' objective it has been decided to try to satisfy two requirements:
• The controllers should be capable of guiding a simulated robot that interacts with noisy

environments.
• The controllers should be inspired by reinforcement learning and dynamic programming

methods.
The following subsections first present the motivations for the choice of the thesis's objective
and the motivation for adopting the requirement of a simulated robot interacting with a noisy
environment. Then they present a brief review of the reinforcement learning framework and
its possible use for planning. Successively they introduce some ideas drawn from problem
solving and logical planning that inspired some aspects of the controllers implemented here,
and present the reasons for which reinforcement learning, and in particular Dyna-PI
architectures, have been adopted as a framework to tackle the research's objective (second
requirement). Finally they briefly present the tasks that have been used to test the controllers.

1.1.1 Why Neural-Network Planning Controllers?

When used for control, neural networks usually play the role of “reactive devices” that yield a
behaviour by directly mapping input sensorial patterns into output behavioural patterns (c.f.
several works in Miller et al., 1990). Are neural networks suitable to implement “deliberative
processes” where the input-output association is indirect, i.e. interleaved by some
sophisticated information processing? Planning is a suitable candidate to attempt to answer
this question. In fact, planning requires a “looping” information processing. This processing is
necessary because planning implies that the prediction of the effects of actions' execution,
produced by the system, is fed back into the system itself. Moreover, there is much literature
on planning since it has been extensively studied by artificial intelligence since its birth (Fikes
and Nilsson, 1971). Finally, planning is also very important for control (Russell and Norvig,
1995; Arkin, 1998).

Another issue that motivated the thesis's object, which is closely related to the previous
one, is as follows. Many classic artificial intelligence planning systems are based on logical
information representations that are set a-priori by the researcher (cf. several examples in
Allen et al., 1990). Originally (e.g. the first version of the robot Shakey in 1969, cf. Russell
and Norvig, 1995, pp. 787), when these planning systems were used to control robots, the
sensors' readings were converted into logic representations, the control was implemented in
terms of manipulations of these representations, and then the outcome of this processing was

14

converted into effectors' commands (cf. top part of Figure 1.2). This approach has difficulties,
as the time-consumption of logical reasoning about the effects of low-level actions is too
expensive to generate real-time behaviour (Russell and Norvig, 1995, p. 788).

Figure 1.2: Top: Planning with logical information representation requires a double transfo
the numerical patterns yielded by the sensors into a logical format, and then a second trans
of the logical information processed into the numerical patterns for the effectors' command

A planning system that uses numerical representations both to plan and to react does not
double transformation.

A different approach, the “behaviour-based approach”, has proposed eliminat

deliberation and planning from control altogether. At least initially, this app
attempted to define control in terms of full reactive behaviour. This was implement
numerical functions and/or rules that “directly” linked the sensors' numerical patt
effectors' numerical patterns (Brooks, 1986; Arkin, 1998; Murphy, 2000). Howeve
behaviour based approach, and other “reactive” approaches, have shown to have
limitations. In fact exclusively-reactive systems are not capable of fully exploitin

Deliberative layer:
logic representations

Transformation Transformation

Planning loops

S
e
n
s
o
r
s

Sensor readings:
numerical

representations

Commands:
numerical

representations

Planning loops

S
e
n
s
o
r
s

tSensor readings:
numerical

representations

Commands:
numerical

representations

mappin

Reactive layer:
mapping by numerical functions,

rules, etc.

Deliberative layer:
numerical representations
E
f
f
e
c
t
o
r
s

E
f
f
e
c

o
r
s

Reactive layer:
g by numerical functions,

rules, etc.
rmation of
formation
s. Bottom:
 need the

ing logical
roach has
ed through
erns to the
r the pure

 important
g eventual

15

strong invariances of the environment, are not very flexible, and are non-taskable in a strong
sense (Russell and Norvig, 1995, p. 790; Arkin, 1990, p. 206; cf. also s. 5.1).

The limitations of these approaches has led to the proposal of several “hybrid
architectures” where a “reactive layer” uses quantitative/rule representations and the
“deliberative layer” (planning) uses logic-like and abstract representations (Mitchell, 1990;
Gatt, 1992; Morasso et al., 1992; Noreils and Chatila, 1995; Arkin, 1989, pp. 205-235, for a
review). Unfortunately, also these systems have a significant limitation: they imply a repeated
double recoding of information from a numerical format to a logic format and vice versa (cf.
top of Figure 1.2). Indeed, the interface between the planning and the reactive components of
these systems is difficult to implement, slow, and prone to errors (cf. Arkin, 1990).

The motivation of this thesis is to build reactive and planning systems that rely only on
numerical representations. This novel approach should allow coping with noisy and
unpredictable environments through reactive behaviours, having the flexibility of planning,
and avoiding the problem of the interface between different information representation
formats (see bottom part of Figure 1.2). Given the level of development that they have
reached (cf. Haykin, 1999), neural networks have been chosen to pursue this goal (cf. s. 4.5
for a review on existing planning systems based on neural networks). This attempt is a
challenge that is hard and interesting at the same time. In fact its solution implies to answer a
number of questions of this type: How implementing the “looping” information processing
required by planning with neural networks? What kind of information representations can be
used to plan with neural networks? Can the neural system acquire the information needed to
plan by experience? How can the neural planning process be used to influence future action?
What are the advantages and disadvantages of using neural networks versus logic-based
algorithms to implement planning?

1.1.2 Why a Robot and a Noisy Environment? Why a simulated robot?

As shown in Figure 1.1, it has been decided that the controllers designed should satisfy two
requirements. The first requirement is that the planning controllers should be capable of
guiding a simulated robot interacting with a noisy environment. This requirement is explained
in this subsection. The second requirement is that the planning controllers should be based on
the ideas of Dyna architectures (actually this is more a “decision” about where to look for
solutions than a proper “requirement”). This requirement is illustrated in section 1.1.5.

Before illustrating the first requirement, the attention of the reader is drawn on the fact
that the emphasis that this section puts on the use of a simulated robot for testing the
controllers should not give rise to the idea that the thesis is mainly about robotics. In fact, as
stated in section 1.1, the focus of the thesis is the development, implementation and testing of
planning controllers based on neural networks.

The first constraint has been chosen because the author was interested in studying
planning in a difficult context: one where a simulated robot perceives the environment
through noisy and limited sensors and interacts with the environment with noisy effectors (cf.
Brooks, 1986; Steels and Brooks, 1995). Such type of domains present problems that are
different from those that arise from domains where planning agents interact with “engineered
environments”, such as the Internet. For example, as we shall see in s. 1.1.5, the fact that the
effects of the actions are noisy and only partially predictable has fundamental implications for
the principles and methods that can be employed for planning.

It has also been decided to study planning with a simulated robot and environment
instead of a real robot. Simulations have disadvantages and advantages. The disadvantages
are that simulations are usually simplified and their results do not entirely match the results

16

that can be obtained with physical experimental sets because simulations rarely capture the
“full and infinite complexity” of reality (Steels, 1994; Nolfi et al., 1994; Jakobi et al., 1995;
Steels and Brooks, 1995; Lee et al., 1998; Nehmzow, 2001). The advantages are that
simulations are fast and cheap, allow the researcher to easily vary the robot's “body” (sensors,
effectors, etc.), facilitate repeated experiments under identical conditions, and allow running
experiments that cannot be easily executed with physical devices (Lee et al., 1998; Miglino et
al., 1995). These advantages usually make simulations preferable in the initial phase of
development of innovative controllers. In fact, in this phase it is usually necessary to change
the physical properties of the robot to explore a wide range of scenarios and tasks, and to run
a considerable number of experiments in a short period of time.

An example of the role played by simulations in developing controllers is reinforcement
learning, the framework adopted in the thesis. The majority of new reinforcement learning
techniques have been developed and tested with simulated agents and worlds. For example
this has been true for: the “actor-critic methods” (Barto et al., 1983); the “Dyna-PI
architectures” (Sutton, 1990); “prioritised sweeping” (Moore and Atkeson, 1993); “temporal
abstract reinforcement learning” (Sutton et al., 1998); cf. Sutton and Barto (1998) for many
other examples. This has not prevented reinforcement learning techniques from becoming
some of the most widely used techniques to control physical robots (cf. the proceedings edited
by Meyer et al., 2000).

Given the advantages rendered by simulations in the initial phase of development of new
controllers, here it has been decided to use a simulated robot and simulated environments.
These simulated robot and environments try to maintain the interesting problems raised by the
control of real robots in real environments, such as continuous interaction with the
environment, perception through noisy and limited sensors, action through noisy effectors.
This should facilitate the further development and application of these same controllers to real
robots.

1.1.3 Reinforcement Learning, Dynamic Programming and Dyna Architectures

As mentioned, a second requirement has been chosen for the controllers: they should be based
on the reinforcement learning framework. This subsection briefly introduces the major aspects
of this framework (cf. chapter 3 for details), while s. 1.1.5 explains why this framework has
been adopted.

The expression “reinforcement learning framework” is used here, as in the title of the
thesis, to refer to a constellation of methods and theories that have been developed
independently, but then have been shown to have important common principles (cf. chapter
3). These methods and theories are: “Markov Decision Processes” (MDP), “Reinforcement
Learning” (RL), “Dynamic Programming” (DP) and “Dyna-PI architectures” (the acronyms
are indicated because they are often used in the literature, but the extended terminology is
used here to ease the reading).

Markov decision processes (Puterman, 1994) and reinforcement learning (Barto et al.
1983; Barto et al., 1990; Kaelbling et al., 1996; Sutton and Barto, 1998) are among the best
theories currently available to frame sequential decision problems under uncertainty (Russell
and Norvig, 1995, p. 498; they are also referred to as “Markov decision problems” or
“reinforcement learning problems”). They assume that an agent knows exactly the current
state of the world (“Markov assumption”) and has to select and execute an action among a set
of available actions. As a consequence the environment returns a new state according to some
given probabilities distributed over the possible states, called “transition probabilities”.
Positive or negative “rewards” (or “utilities”) are assigned to some states and a 0 reward is

17

assigned to the remaining states (e.g. in the stochastic path-finding problems, cf. s. 1.1.6, the
“goal-state” is assigned reward +1, while all the other states are assigned reward 0).

Within this stochastic context the concept of “plan” (a sequence of “operators” to
execute) employed in the classic artificial intelligence searching and planning literature, is
substituted by the concept of “policy”. A policy associates an action probability distribution
with each state. This distribution determines the probabilities that the agent will select each
action. The strength of the idea of “policy” is that whatever the consequences of an action are
in terms of the new state reached after its execution, the agent is not committed by any
previous decision and can decide what to do on the basis of the new state itself. The agent's
task is to find an optimal (or near-optimal) policy, i.e. a policy that (in the most popular
formulation of reinforcement learning tasks) maximises the expected future discounted
rewards starting from each possible state. In the case of the stochastic path-finding problems
this means that the agent has to find a policy that leads from the start state to the goal state
following the most direct path, notwithstanding the perturbations caused by noise.

Now let us consider dynamic programming methods. Given a reinforcement learning
problem, if a model of the environment is available, dynamic programming methods (Ross,
1983; Bertsekas, 1995) are capable of generating optimal policies by using it. A model of the
environment is made up of two components. The first component, the “state transition
function”, returns the state achieved after selecting a particular action at a given state on the
basis of the transition probabilities. The second component, the “reward function”, returns the
reward associated with the execution of a given action in a given state. Dynamic
programming methods are based on the generation of a gradient field of “evaluations”,
associated with the states, that are higher for states closer to states with high positive rewards
(e.g. the goal state). The evaluations of all the states are computed iteratively and in parallel
(“full sweep”). The evaluation of one state is updated on the basis of the approximate
evaluation of all the states reachable from it and on the basis of the transition probabilities
(“full back-up”). At execution time, dynamic programming selects the actions that ascends the
gradient field along the steepest direction (policy). Clearly, dynamic programming
implements a form of planning since it uses a model of the environment to guide the course of
action.

Given a reinforcement learning problem, if a model of the environment is not available
reinforcement learning algorithms (Sutton and Barto, 1998) are capable of finding a policy by
using a trial-and-error process directly executed in the environment. Similarly to dynamic
programming, reinforcement learning algorithms compute state evaluations and action
policies based on those evaluations. However, unlike dynamic programming, they update the
state evaluations and the action policies by executing actions in the environment and by
observing the consequences in terms of states reached and rewards obtained (“sample back-
up”). As a consequence, the updating of evaluations and policy affects only the states actually
visited (“focussing”; however the convergence of reinforcement learning algorithms usually
requires that all states are visited an infinite number of times, cf. Sutton and Barto, 1998).
With more experience, the state evaluations become more accurate and the policy changes
towards the optimal one.

In reinforcement learning the policy is usually generated dynamically from the
evaluations each time that the agent needs to select an action (cf. the popular Q-Learning
algorithm, Watkins, 1989, and Watkins and Dayan, 1992, reviewed in s. 13.2.3). The
controllers designed and implemented here are based on the “actor-critic reinforcement
learning methods” (Barto et al., 1983; Sutton and Barto, 1998). Actor-critic methods are
characterised by two memory structures, one to store the evaluations, and one to store the

18

policy probabilities. This research has chosen to adopt actor-critic reinforcement learning
instead of other reinforcement-learning methods for the following reasons:
• Convergence of reinforcement learning that uses a differentiable function approximation,

that satisfy some particular conditions, has been demonstrated only for the case of actor-
critic methods (i.e. methods that use “Policy Iteration”, see Sutton et al., 2000).

• The best stochastic policy can be better than the best deterministic policy in Partially
Observable Markov Decision Processes (Singh et al, 1994; Jaakkola et al., 1995; cf. s.
13.2.2).

• The author is interested in actor-critic models because they are more biologically
plausible than other reinforcement learning models (Sutton and Barto, 1990; Houk et al.,
1994; Sutton and Barto, 1998; Baldassarre and Parisi, 2000; Baldassarre, 2001b;
Baldassarre, 2001e).

Sutton (1990) has integrated dynamic programming and reinforcement learning into a class of
architectures called “Dyna” (“Dyna” stands for “dynamic programming”). When the Dyna
architectures are based on actor-critic reinforcement learning methods they are called “Dyna-
PI architectures” where “PI” stands for “policy iteration”, the key process at the base of actor-
critic methods (cf. s. 13.2.3). The basic idea of Dyna architectures is to have a reinforcement
learning architecture that is trained in the environment but also through a model of the
environment used to generate “simulated” extra experience, similarly to what is done in
dynamic programming.

The new controllers presented in the thesis are inspired by Dyna-PI architectures. These
controllers overcome some drawbacks of Dyna architectures concerning predictive planning
and taskability (cf. s. 5.1 and 8.3.2). Once this is done, these controllers are used to investigate
the advantages and disadvantages of implementing planning with neural networks (s. 1.2
presents an overview of the issues explored).

1.1.4 Ideas from Problem Solving and Logical Planning

The field of problem solving and search strategies (Korf, 1988; Russell and Norvig, 1995, pp.
55-121; cf. s. 2.2 for a review) tackles problems where an agent has to find a sequence of
states that lead from a starting state to a goal state. In some problems this is done on the basis
of information about the approximate (usually optimistic, or “admissible”) “heuristic”, i.e. the
estimate of the cost from each state to the goal. Interestingly the concept of state evaluations
on which dynamic programming and Dyna architectures are based is related to the concept of
“heuristic” employed within problem solving. For example, it has been shown that a particular
form of dynamic programming, namely “trial-based real-time asynchronous dynamic
programming”, is equivalent to a particular form of heuristic search, namely “learning real-
time A*” (Barto et al., 1995). As we shall see in s. 13.2.11 these two methods are equivalent
because the evaluations and the heuristic values that they respectively learn, have a close
correspondence.

This research has isolated some ideas developed within problem solving that could
inspire the design of the neural planning controllers presented later. Notice that the original
ideas from problem solving could not be directly applied in the new context, mainly because
problem solving has been developed for deterministic environments, while the neural planners
considered here should be capable of dealing with stochastic environments. The following
ideas proposed by the problem solving literature have been relevant to develop the controllers
proposed here:

19

• Achieving a full taskability of the neural planners through the use of a neural network
that can establish if the current state is similar enough to the current state (analogously to
the idea of “goal test” used in problem solving, cf. s. 2.1).

• Implementing planning in terms of an exploration of the model of the environment from
the start and from the goal (analogously to the idea of “bidirectional search”, cf. again s.
2.1).

• Executing iterative deepening explorations of the model of the environment (analogously
to the idea “iterative deepening search”, cf. again s. 2.1).

Planning is the field of artificial intelligence that has traditionally tackled the problem of
deciding the future course of action on the basis of the agent's capacity to predict its
consequences. Planning is applied to problems similar to those of problem solving and is
closely related to it. Planning differs from problem solving because it “breaks” the
“monolithic” representation of state used in problem solving into logical statements (“STRIPS
representation”). This operation allows planning to gain in efficiency when looking for a
solution of the problem (cf. s. 2.3 for details). Unluckily this strategy cannot be directly
followed when using neural networks (cf. s. 2.3.3 for details). Notwithstanding this, this
research has attempted to suitably transform and transfer some ideas developed within
planning to the design of the neural planning controllers based on reinforcement learning. In
particular the following ideas have been considered for this research:
• Importance of planners being able to deal with uncertain outcomes of actions (cf. s.

2.4.1).
• Necessity of finding a balance between “conditional planning” (this kind of planning is

close to the idea of “policy”; cf. s. 2.4.1) and “re-planning” (this is a kind of planning that
stops the action to improve/formulate a new plan in particular circumstances; cf. s. 2.4.2).
The planners designed and implemented here offer a solution to this problem, based on
the “confidence in action” of the agent (cf. s. 8.3.2).

• Non-scalability of “universal planners” (cf. s. 2.5.2): this same problem applies to the
concept of “policy” (cf. s. 2.5.5).

• Importance of “abstract planning”: here a controller that implements a simple form of
abstract planning is proposed (cf. s. 2.4.3 and chapter 11).

1.1.5 Why Dyna-PI Architectures (Reinforcement Learning + Model of the
Environment)?

In s. 1.1.3 the main concepts at the basis of reinforcement learning and Dyna architectures
have been introduced. Why has this framework been chosen to build the neural network
planners presented here? This subsection answers this question. Dealing with agents that act
in noisy environments has important implications for planning. The first STRIPS planners
(Fikes et al., 1971) had several problems in dealing with these kinds of environments. In fact
they decided the course of action a-priori on the basis of a model of the environment that was
assumed to be perfect, and then they executed the actions in the environment in a “blind”
way, i.e. without monitoring the effects of the execution of actions. The problems derived
from the fact that the execution of actions often resulted in effects different from the expected
ones (Russell and Norvig, 1995, p. 392 and p. 787). Later versions of these planners offered
some solutions to deal with these problems. For example they contemplated a-priori different
possible outcomes of actions (e.g. cf. “conditional planning”, Warren, 1976; see s. 2.4.1) or
monitored the effects of actions' execution (e.g. IPEM, Ambros-Ingerson and Steel, 1988; cf.
s. 2.4.2).

20

This approach has gone even further. If an agent has an “action function” (e.g. a look-up
table or a set of condition-action rules) that specifies what action to select in correspondence
to a given state, it does not need to worry about unexpected developments in the environment.
All it has to do is to execute whatever action the action function recommends for the state in
which it finds itself. The field of “reactive planning” aims at taking advantage of this fact,
thereby avoiding the complexities of planning in dynamic, inaccessible environments.
“Universal plans” (Shoppers, 1987; Shoppers, 1989; cf. s. 2.5.2) were developed as a general
scheme for reactive planning. A universal plan is a function f that maps the set of states S into
the set of action A, i.e. f: S → A. In an initial phase the planning process “compiles”
information into the universal plan. Successively the universal plan is used to act in the world
in a reactive fashion. Interestingly reactive planning turned out to be a rediscovery of the idea
of policy of Markov decision processes, used throughout this research (Russell and Norvig,
1995, 411).

Are Markov decision processes and the concept of policy the final solution for planning
in stochastic environments? Probably not. This approach, like universal planning, also has
important limitations (Ginsberg, 1989). The most important ones derive from this fact: the
system has to know what to do for every possible state. This implies two problems if the state
space is big, as in the majority of realistic problems. The first problem is that a lot of time is
needed to prepare (“compile”) the plan since the agent needs to decide what to do for every
possible state. The second is that a big memory structure is needed to store the “compiled”
plan. Using function approximation methods such as neural networks can alleviate these
problems (Sutton and Barto, 1998, p. 193; cf. s. 13.2.7 and 4.4.1). However, these problems
are still central for planning since one of the strengths of planning is precisely that it allows
agents to quickly prepare a plan focussed on few important states (cf. s. 2.4 and 8.3).

Given these considerations, it is likely that the optimal solution is between the two
extremes of having rigid plans (plus re-planning in the case of failure) and universal planning
(cf. Russell and Norvig, 1995, pp. 407-409). This means that a good strategy would be to plan
when necessary, to build plans with a certain degree of robustness that can deal with some
unexpected but likely outcomes (i.e. to focus planning on states that are likely to be visited),
and to re-plan when actions' outcomes are different from those expected. As we shall see the
controllers implemented in this thesis have such properties. In fact they are inspired by the
Dyna-PI architecture (the basic version of this is an instance of universal planners) but they
also incorporate some aspects of re-planning and planning focussed on relevant states.

A last reason (quite different from the previous ones) for which reinforcement learning
and Dyna architectures have been chosen to implement planning, is one particular interest of
the author related to the development of animals' brain during natural evolution: what is the
minimal “machinery” that needs to be added to a reactive learning controller to obtain a
planning controller? Though interesting, this aspect has not been developed in the thesis to
preserve its focus on computational issues (but cf. Baldassarre and Parisi, 2000; Baldassarre,
2001b; Baldassarre, 2001e; Baldassarre, 2002).

1.1.6 Stochastic Path-Finding Landmark Navigation Problems

This section describes the type of tasks that have been used to test the controllers designed
and implemented here (cf. s. 3.1 for a formal formulation). We have already seen the nature of
reinforcement learning problems. Broadly speaking, these problems are characterised by fact
that they do not have a termination. Several states of the space problem have a positive reward
associated with them, and the agent has to behave so that in each state it maximises the sum of
the expected discounted future rewards (Sutton and Barto, 1998, p. 60-61). In s. 5.1.4 we will

21

see that Dyna architectures, that are capable of dealing with this broad category of problems,
are not “taskable” when planning. In fact each new goal implies a new reward function, and
this reward function has either to be learned by the agent by experiencing the goal itself, or it
has to be provided by the designer. We will see that a solution of this problem is to restrict the
category of problems that the controllers can tackle to “stochastic path-finding problems”.
Stochastic path-finding problems are similar to the problems of “problem solving”: the agent
has to find the most direct path from a start state to a goal state.

The particular stochastic path-finding problems used in this thesis are “landmark
navigation problems”. In these problems the agent has to reach a goal position from a start
position in a two (or n) dimensional space, by referring to the view (or other similar
information) of some landmarks spread in the environment. In the problems considered here a
simulated robot moves in a continuous two-dimension space where there are few landmarks
(with the exception of chapter 11, in the simulations considered here the robot can cover one
side of the arena in 20 moves).

It is important to consider why the use of a simulated robot makes the problem more
interesting and complex in comparison to the problems usually considered within problem
solving. To understand this complexity it is useful to look at the problem from the point of
view of the simulated robot employed here. The simulated robot perceives the environment
through a horizontal one-dimensional binary retina, always aligned with the simulated
magnetic north. The retina returns a vector of 50 bits corresponding to the activation of its
pixel sensors (250 possible configurations). The simulated robot can move in the arena by
executing one step in the 8 compass directions (north, northeast, east, etc.). The simulated
robot's task is to move to a position where the retina is activated in a way similar to a given
template assigned to the robot itself (goal). Both actions and perceptions are affected by noise.
In contrast to problem solving tasks, no information is furnished to the simulated robot about
which state is a neighbour of which state. If the agent wants to plan, it first needs to “learn”
this relationship between states in terms of “which state results from which action executed in
which state” (model of the environment). Moreover, when it “plans” it has to consider that its
model is imperfect because of noise, and that the execution of an action in identical conditions
may produce different outcomes because of noise.

Notice that in the task just described no particular landmark or signal emitter marks the
goal position. The goal position is recognisable only when it is reached, because it matches
the given template. The literature considers this type of problem (e.g. McGovern et al., 1997;
Trullier and Meyer 1998) much more challenging than path-finding problems where there are
signal emitters or special markers at the goal position (e.g. Rummery and Niranjan, 1994; Sun
and Peterson, 1998). In fact in the problems considered here the simulated robot has to be
capable of selecting a particular action in correspondence with a view of the environment.
Instead, in the easier case where there is an emitter or special marker at the goal position the
direction of the goal is available at each position visited, so the agent can solve the problem
by simply aligning the direction of its movement with the direction of the goal (while “local”
information is usually used to avoid obstacles).

Although the controllers have been tested only with landmark navigation problems,
efforts have been made to design controllers that are general and also applicable to other
problem domains. In the course of the thesis it will be stated clearly when this has not been
possible, i.e. when some aspects of the controllers rely upon specific features of landmark
navigation problems. The thesis will also illustrate some results related to the particular nature
of landmark navigation tasks when tackled with reinforcement learning and neural networks.

22

1.2 Overview of the Controllers and Outline of the Thesis

The thesis is divided in two parts. The first part (chapters 2 to 5) presents a critical literature
review and an analysis of the ideas and principles relevant for neural planning. The second
part (chapters 6 to 11) presents some new neural-network planners and an empirical analysis
of them through simulations. The thesis is also divided in chapters, sections and subsections
(for ease of reference, sections and subsections are referred to as “sections” or “s.” for short,
for example “cf. s. 1.2”).

1.2.1 Overview of the Controllers Implemented in this Research

The continuity of the thesis is guaranteed by two elements. The first is that the controllers
presented in the thesis are built incrementally through the chapters, i.e. each new controller is
built by adding new components to the previous controller. The second is the nature of the
problems addressed. The first aspect is discussed here, while the second is discussed in s.
1.2.2. The whole final controller is reported in Figure 1.3. The reader can read the label of this
figure to gain an idea of the architecture of the controllers, and skip the rest of this section, or
read the general description of them that follows.

Figure 1.3: The final controller presented in the thesis developed incrementally through the chapters.
Networks with a bold border implement a simple reinforcement learning controller (chapter 6), or a

modular neural reinforcement learning controller (chapter 7). Networks with a thin border implement
forward planning (chapter 8). Networks with a dashed border implement bidirectional planning
(chapter 9). The whole system implements bidirectional planning with modular neural networks

(chapter 10). The whole system without modularity has been used to implement forward and backward
planning with a simple kind of abstraction called “coarse planning” (chapter 11). Numbers indicate the

number of units of each neural layer. Stars indicate the points where the information flows between
the modules are enhanced or blocked during acting or planning.

Figure 1.3 shows that the controllers are mainly composed of two-layer feed-forward
neural networks connected in a direct or re-entrant way between them, or with the
environment. The core of the algorithm is made up by the actor, the evaluator and the TD-
critic networks that together implement an actor-critic reinforcement learning system. The

Matcher

100 100

Evaluator

100

Predictor

8 100

Actor

Stoch. sele.

8

100

50

100

50

Goal Input

Contrasts

Learning
signal

Action-planning controller

TD-Critic

Back-Predictor

8 100

Back-Actor

100

Stoc. sele.

8 50

100 100 100 100

Gating net. Gating net. Gating net.

23

evaluator has the role of learning the evaluations of the states, and hence of producing the
gradient field of evaluations, and the actor has the role of learning the policy on the basis of
such a gradient field, and hence of selecting the actions. This basic model has been tested in
two versions: one where the actor and evaluator are simple “monolithic” networks (chapter 6)
and one where the evaluator and actor are “modular networks” (chapter 7). Both these models
learn by interacting with the environment.

The “neural forward planner” (chapter 8) is built by adding two further networks to this
basic model. The first network is the matcher, a network capable of deciding if the current
state is or is not the goal. This network produces the reward signal used to train the evaluator
and actor. It corresponds to the “reward function” part of the model of the environment. The
second network is the predictor, a network capable of predicting the next state that will follow
the execution of an action in correspondence to a given state. It corresponds to the “state
transition function” part of the model of the environment. A hardwired algorithm, the “action-
planning controller” showed in Figure 1.3, decides when to act and when to plan. This
algorithm also controls the flows of information between the networks of the system, the
sensors, and the effectors, by “opening and closing” the flows at the level of the stars
indicated in the figure.

Given that planning is central to the thesis, it is useful to briefly anticipate how the neural
planning process works in these systems. In the forward planner, planning takes place through
reinforcement learning executed within the model of the environment rather than in the actual
environment. When the system plans, it generates repeated sequences of projections into the
future starting from the current state. To this end, the actor selects an action, the predictor
predicts the next state on the basis of the action and the current state; this predicted state is
sent back to the actor and the predictor (re-entrant connections); the actor selects another
action and the predictor generates another predicted state, so the process goes on generating a
“trajectory” into the future. While many trajectories are generated, the evaluator and actor are
trained as it would be done in the case of training in the actual environment. When the
controller is “confident” enough, i.e. it assigns high probabilities to one or few actions in
correspondence to the current state, the policy expressed by the actor is executed in the
environment.

The “neural bidirectional planner” (chapter 9) works similarly to the forward planner.
The main difference is that it generates sequences of actions and predictions both forward
from the current state and backward from the goal. This bidirectional planner is built by
adding two neural networks to the forward planner. The first neural network, the “back-
actor”, is capable of “guessing” which was the action that led to a particular state. The second
neural network, the “back-predictor”, is capable of “back-predicting” what could have been
the state that brought to a given state by executing the action yielded by the back-actor in
correspondence to this given state itself.

Both the forward and bidirectional planners are also endowed with a modular evaluator
and actor and tested with a multi-goal task (chapter 10). Finally, the forward planner is used
to implement a simple form of abstract planning based on the repetition of actions of the same
kind (e.g. “north, north, north”, chapter 11).

1.2.2 Outline of the Thesis and Problems Addressed Chapter by Chapter

The second element of continuity across the chapters is the nature of the problems addressed.
These are all related to the objective of the thesis: developing taskable predictive-planning
neural controllers inspired by the Dyna-PI architecture. These problems are now introduced
by presenting an outline of the thesis chapter by chapter.

24

First Part. The first part, from chapter 2 to 5, has two objectives. The first is to present a
literature review of the frameworks within which the controller have been developed. The
second is to present a critical analysis of the strengths and weaknesses of these contributions
with the aim of isolating ideas and principles that can be useful to implement planning with
neural networks.

Chapter 2. Chapter 2 first presents the algorithms used by blind and heuristic search, and
refers the reader to the appendices for details. Heuristic search is particularly important
because it has strong connections with dynamic programming and reinforcement learning
methods in general. The chapter continues by presenting a review of planning. Important
ideas, as “re-planning” and “conditional planning”, are discussed here.

Chapter 3. This chapter introduces the Markov decision processes, the reinforcement
learning problem, the actor-critic models, dynamic programming, the correspondences
between dynamic programming and heuristic search, and refers the reader to the appendices
for the mathematical details. The chapter also presents the details of path-finding problems
(the class of problems dealt with in the thesis), Dyna and Dyna-PI architectures, and the issue
of how focussing planning on limited areas of the state space. The review of these techniques
is accompanied by comments on their relevance for neural planning.

Chapter 4. This chapter starts by defining neural networks and by analysing their properties
relevant for planning. Then the reader is referred to the appendices for a mathematical
presentation of the feed-forward neural networks, the back-propagation algorithm, and the
“mixture of experts networks”, that are building blocks used in the controllers presented here.
The chapter ends by reviewing some of the most important existing planning systems based
on neural networks.

Chapter 5. This chapter presents a formalisation of learning of behaviour and taskable
planning, and uses it to show that the Dyna-PI planner is not taskable in a strong sense. Then
it presents a unified view of some heuristic search methods, some reinforcement learning and
dynamic programming methods, and the activation diffusion planning method. This unified
view is centred on the idea of evaluation gradient field. Finally it summarises the nature,
advantages and disadvantages of “plans” in comparison to “policies”.

Second Part. The second part of the thesis, from chapter 6 to chapter 11, illustrates,
implements and empirically tests some neural reactive and planning controllers based on the
ideas presented in the first part.

Chapter 6. This chapter introduces the simulation scenarios used throughout the research.
Then it presents the neural controller based on the actor-critic model, which is at the core of
all the controllers implemented in the following chapters. Some simulations investigate the
functioning, the strengths (such as the generalisation capacity) and the drawbacks (such as the
aliasing problem) of this controller, and provide some data useful for interpreting the results
of the succeeding chapters. Some other simulations suggest that discounted reinforcement
learning has problems in dealing with long periods of time. This issue is very important for
planning, as planning expresses its full power when it deals with long periods of time.

25

Chapter 7. This chapter addresses the problem of interference. This is an important problem
encountered when planners have to accomplish several tasks. To tackle this problem, a multi-
goal version of the landmark navigation problem is introduced, where the simulated robot has
to pursue different goals at different times. A new controller is designed and implemented that
deals with the problems caused by interference through “emergent functional modularity”. In
this controller a “mixtures of experts network” is employed to implement the evaluator
(evaluation function) and a novel hierarchical network to implement the actor (policy).

Chapter 8. This chapter deals with the problems of taskability of the Dyna-PI architecture,
and with the problems of focussing planning around relevant states and interleaving acting
and planning. Afterwards, the chapter presents a “neural forward planner” that offers a
solution to these problems. In particular the forward planner is taskable, is capable of
focussing planning on relevant states, and is capable of deciding when to act and when to
plan. In comparison with the basic version of the Dyna-PI architecture and the classic
artificial intelligence planners, the controller is new in that:
• Most of its components are implemented with neural networks.
• It generates the reward internally by comparing the states visited with the goal state

through the “matcher”. The matcher allows the controller to be taskable in a strong sense.
This differs from the Dyna-PI architectures where the reward function has to be learned
for each new goal assigned to the agent or has to be furnished by the user/designer.

• The controller decides whether to plan or to act on the basis of its “confidence” in action.
The confidence is computed on the basis of the probabilities of selecting the different
actions.

• A new algorithm is designed and implemented to guide the “simulated experiences”
while planning. As mentioned previously, this algorithm iteratively explores the model of
the environment starting from the current position in search for the goal. The length of
these explorations increases with failure, and decreases with success, at achieving the
goal.

• Contrary to classic artificial intelligence planners, the “model of the environment” is
learned through a modular neural-network, the “predictor”. The experiments show that
the predictor has an interesting capacity to maintain the coherence between the states
predicted while planning and real states, probably because the patterns that correspond to
real states are a sort of “attractor” for the predicted states.

Chapter 9. The problem addressed in this chapter is how to further focus planning on
relevant regions of the state space. While planning the controller presented here, the “neural
bidirectional planner”, carries out both forward searches from the current state, and backward
searches from the goal. In comparison to the forward planner of chapter 8, this controller
shows a better capacity of focussing “planning search” around the goal and quickly
propagating the evaluations backward from the goal. The chapter also shows that the
drawbacks of the controller are its architectural complexity and the need to generate simulated
experience backward from the goal.

Chapter 10. This chapter addresses the problem of generalisation, interference and
modularity, introduced in chapter 7, within planning. To this purpose it compares the
performance of the reactive controller, forward planner, and bidirectional planner within the
asynchronous multi-goal task. This test is important since planning tends to exacerbate
interference problems because it focuses search on the same goal for a long time.

26

Chapter 11. This chapter addresses the problem of how implementing abstract planning with
neural network systems. In particular it explores a simple form of abstraction, called “coarse
planning” for reference. Coarse planning is based on planning with “coarse actions”, i.e. small
sequences of primitive-actions of the same kind, and acting with “primitive-actions”. Some
simulations also investigate the problem of the temporal limits of discounted reinforcement
learning, introduced in chapter 6, within the context of coarse planning.

Chapter 12. This chapter summarises the main passages of the thesis, highlights the most
important insights achieved, and suggests the future work to do to continue the research
started here.

27

PART 1

CRITICAL LITERATURE REVIEW AND ANALYSIS
OF CONCEPTS USEFUL FOR NEURAL PLANNING

This first part of the thesis has two objectives:
• To offer a review of the results of four fields of artificial intelligence relevant for this

research. These fields are “blind” and “heuristic” search, planning, reinforcement learning
and dynamic programming, and finally neural networks.

• To present critical observations that evaluate the relevance, strength and drawbacks of the
different approaches/algorithms/systems presented, in order to isolate some ideas and
principles that might be useful to design neural planners.

To highlight the original elaboration of the material, the review part will be contained in
standard sections, while the critical observations will be presented in sections titled “critical
observations” (when observations presented by these sections are not original, references will
be given).

28

2 Problem Solving, Search, and STRIPS Planning

Broadly speaking, problem solving and planning are two fields of artificial intelligence that
study agents whose task is to “search” a “sequence of actions” (“operators”) that bring from
an “initial state” to a “goal state” through the “state space”. As we shall see the main
difference between the two fields is that problem solving treats goal, states and actions as a
whole, while planning decomposes them into parts each represented by a logical description
(Russell and Norvig, 1995, p. 339). This opens up a number of possibilities that make the
search of a solution much more efficient (cf. s. 2.3).

2.1 Planning as a Searching Process: Blind-Search Strategies

The most important aspects involved in the solution of a problem within “problem solving”
are these (Russell and Norvig, 1995, p. 60):
• State space. The set of all possible states of the environment.
• Initial state. The state from which the agent starts to solve the problem.
• Goal and goal test. A goal is a state that is “desirable” for the agent. There might be more

than one goal. The goals can be explicitly listed or identified by abstract properties. A
goal test is a procedure directed to verify if a particular state corresponds to a goal.

• Actions (operators). The actions with which the agent interacts with the environment. The
term “operator” is used to denote an action in terms of the state that will be reached by
carrying out the action in a particular state. In problem solving little importance is given
to the details of execution of the actions, so the stress is put on the next states achievable
from one particular state. The execution of an operator is often associated with a cost
(often equal to 1 for all operators).

• Path and solution. A path is a sequence of actions leading from one state to another state,
while a solution is a path leading from the initial state to a goal state.

• Path cost. Sum of the costs of the individual actions along a path. The path cost from the
initial state to a state s is indicated by g(s).

• Search and expansion. The process of looking for solutions, and in particular for solutions
with low cost, is called search. A search is carried out by “expanding” the states that can
be achieved from a particular state. An expansion is the application of the available
operators to a state in order to know the states that can be achieved from it. Notice that
when the search terminates and the execution of the solution takes place, an execution of
a physical action corresponds to each expansion.

It is helpful to think of the search process as building up a search tree whose nodes correspond
to the states of the state space. The root of the tree is the initial state, and the leaf nodes
correspond either to a goal state or to a state without successors. The search strategy is then
the algorithm that is used to iteratively expand the search in some nodes of the search tree in
order to find a solution.

Search strategies can be divided into two main categories. The uninformed or “blind-
search” strategies explore the branches of the search tree without using any information about
the nodes to expand. The informed or “heuristic-search” strategies use information about the

29

cost from a state to the goal to selectively expand the nodes. A review of some blind search
strategies that were relevant for this research is presented in appendix 1 s. 13.1.1 (cf. also
Korf, 1988).

2.1.1 Critical Observations

It is important to stress why problem solving can be viewed as a form of predictive planning
(also cf. Russell and Norvig, 1995, pp. 338-339). During the searching process the selection
of the operators employed to build the solutions to the problem is done on the basis of some
“model of the environment”. An “operator” (as has been defined previously) incorporates part
of such a model as the state that the agents expect to observe after the operator is executed in
a particular state. When a solution is found (and considered satisfactory) the agent can execute
the single operators that make up the solution in the environment. In this way the capacity to
predict is used to constrain the future course of action.

Another important aspect of problem solving is that the search strategies presented can be
used only when the effect of an action (operator) is deterministic, or stochastic with a finite
number of possible outcomes. In fact only in this case it is possible to explore in a systematic
way all the possible sequences of actions. This aspect is particularly relevant for this research
since the controllers designed and implemented here are required to be capable of dealing
with a stochastic world (cf. s. 1.1.2). As we shall see chapter 8 and 9 address this problem by
proposing exploration strategies that resemble the iterative-deepening search and the
bidirectional search, but are adapted to deal with the stochastic outcomes of action execution.

2.2 Planning as a Searching Process: Heuristic-Search Strategies

Heuristic-search strategies use information about the cost of the cheapest path from a given
state to the goal to determine which node to expand. A function that calculates such a cost
estimate is called a “heuristic function” and can be indicated with h[s], where s is the current
node. For most problems the cost of reaching the goal from a particular state can be estimated
but cannot be determined exactly. Heuristic functions are problem specific. Some important
heuristic-search strategies relevant for this research are reviewed in appendix 1, s. 13.1.2.

2.2.1 Critical Observations

The core aspect of heuristic-search strategies is that they exploit some information about the
estimated “distance” that the states have from the goal. This aspect is particularly relevant
because it resembles what is done by the reinforcement learning algorithms employed to
design the neural planners presented later. These algorithms work by assigning “evaluations”
to states. The states’ evaluations form a gradient field over the states, and reflect the distance
of them from the goal. As shown in s. 13.2.11, there is a precise correspondence between
some forms of dynamic programming and some heuristic-search strategies.

S. 2.1.1 has already shown that search methods can be thought of as a form of planning.
As planning processes, search methods suffer of a major drawback that stems from the fact
that they treat states as “black boxes”. When a search strategy selects an action (operator) in a
given state, it has to consider all the possible available actions, independently of their
pertinence to the state. This generates a combinatorial explosion after few planning steps (cf.
s. 13.1.1). Heuristic search methods attempt to face this problem by assigning a cost or value
to states in order to focus the search. Nevertheless, the combinatorial explosion is still a major
difficulty for problem solving, even if we consider the sophisticated A*, IDA* and LRTA*

30

(cf. cf. s. 13.1.2). A possible solution to this problem is to exploit the advantages deriving
from “opening up” the representation of states, goals and actions. The effects of this are so
important that a new branch of artificial intelligence, that of “planning”, has been formed to
study them.

2.3 STRIPS Planning: Partial Order Planner

Within STRIPS planning, a planning problem can still be framed as it has been done in s. 2.1.
The big innovation of STRIPS planning is a new way of representing the states, goals and
actions, the “STRIPS representation” (STanford Research Institute Problem Solver; Fikes and
Nilsson, 1971). The basic idea underlying the STRIPS representation is to “open up” the
representation of states, goals and actions. The representation of the states is broken into a
conjunction of logical predicates. Lists of predicates describe the initial state and the goal
states. The representation of actions is more complex. An example of how an action
(operator) is represented is shown in Figure 2.1.

Figure 2.1: An example of action, with preconditions and effects.

In this diagram “Go(there)” is the label of the action. The “Procedure of execution” is a

specification of the single steps that have to be carried out when the action is executed. An
action contains some “preconditions”, i.e. a list of predicates that describe the set of states
where the action is applicable. It also contains some “effects”, i.e. a list of predicates that
describe the set of states where the action can lead if executed. The effects are divided in two
parts: a “delete list”, that contains all the precondition predicates that do not hold anymore as
a consequence of the action execution, and an “add list”, that contains all the predicates that
describe the consequences of the action execution.

2.3.1 Situation Space and Plan Space

It is possible to describe a problem in STRIPS language and solve it by starting with the
initial state and applying operators one at a time until a state that includes the literals of the
goal is reached. A blind-search strategy could be used to this purpose. This would be a kind of
planner called “situation space” planner because it searches through the space of possible
situations (Russell and Norvig, 1995, p. 345). It would be also called a “progression planner”
because it searches forward from the initial situation. The main problem with the situation

Action: Go(there)

Preconditions:

At(here)

Have(energy)

Effects: Delete list

¬At(here)

¬Have(energy)

Effects: Add list

At(there)

Procedure of execution

31

space progression planners is the branching factor which implies a huge size of the search
space after few steps ahead.

One way to cut the search space is to search backwards. This search is called “regression”
planning. This kind of search is possible within a STRIPS representation, because the actions
contain enough information to regress from some preconditions of one action, to an action
that has some effects that satisfy that preconditions. Regression planners are more efficient
than progression planners because usually few actions can be linked to the goals, while many
actions can be linked to the initial state. Unfortunately searching backward is complicated by
multiple goals or, as in chess, by the excessive size of the space. In these conditions situation
space planners are incomplete (they do not always arrive at the solution; Russell and Norvig,
1995, p. 345).

An alternative strategy is to search through the space of plans rather than the space of
situations. This strategy implies to start with a simple incomplete plan (“partial plan”), and
then to add actions to it until a complete plan is obtained. A set of operators is defined that
allows passing from one plan to another plan. The operators add an action, impose an ordering
to the actions of the plan, instantiate a variable, and so on. An important aspect of this strategy
is that the order with which the actions are found is irrelevant.

Many planners use the principle of the least commitment, which states that one should
leave things to be worked out as late as possible. The reason is that if some choices are made
too early, it is more likely that they will cause a backtracking process later. The principle is
also applied to the ordering of the steps. The ordering should be made as late as possible. A
planner that can represent plans in which some steps are not ordered, is called a “partial order
planner”. The principle of least commitment also applies to variables: they should be
instantiated as late as possible. Plans in which every variable is instantiated are called “fully
instantiated plans”.

2.3.2 Partial Order Planner

Now one of the first planners based on the principles just mentioned, the Partial Order Planner
(Sacerdoti, 1977), is described here in general terms. This planner starts with an initial plan
represented by the start and the goal, and tries to add actions to it. To keep the search focused,
the planner only considers adding actions that serve to achieve a precondition that has not yet
been achieved. The planner stores information about the “causal links”. A causal link marks
the fact that an effect of an action satisfies a precondition of another action. Causal links are
“protected” in the sense that if an action can break one of them, then it cannot be inserted in
the plan. The planner also stores information about “ordering constraints” between pairs of
actions. An ordering constraint between two actions implies that the first action can be
executed only after the execution of the second action.

At the beginning the planner selects an action that satisfies some of the preconditions that
describe the goal. Unlike the search algorithms of s. 2.1, the branching factor is now quite
limited. Then the planner tries to add other actions to satisfy the unlinked preconditions of the
actions already inserted in the plans. If an insertion violates a causal link, the planner tries to
insert an ordering constraint so that the violating action is executed before (demotion) or after
(promotion) the two actions whose link would be violated. If this is not possible the planner
backtracks, and other causal links / ordering constraints / new action insertions are tried out. A
solution is achieved when a complete and consistent plan has been assembled. A plan is
complete when all the preconditions and effects of actions of the plan are linked. A plan is
consistent when the causal and ordering links have no contradictions.

32

2.3.3 Critical Observations

It is important to notice that in STRIPS planning, as in problem solving, the designer
hardwires the model of the environment into the system by defining the actions. In fact the
effects a STRIPS action represent the prediction of the effects that the planner should expect
from the execution of the procedure of the action itself, given the preconditions in
correspondence to which it is executed. This is an important simplification since the
acquisition of a reliable model of the environment is a crucial step for the success of planning
of autonomous agents.

We have seen that breaking the state representation into logical statements through
STRIPS representations allows the planners to cut down the branching factor of the search.
Unfortunately, this strategy implies two operations that are very difficult to implement with
neural networks: (a) the input patterns from the sensors need to be converted into logical
statements; (b) the logical statements needs to be processed in sophisticated ways to build the
plan.

The first difficulty derives from the fact that we still do not have an efficient neural
network model that can parse a complex input from the environment (e.g. a visual image) and
build a logical or equivalent description of the “relevant aspects” of it, e.g. by describing the
objects present in the image.

The second difficulty derives from the following considerations. A central aspect of
STRIPS planners are the reasoning processes. These are based on sophisticated and precise
mechanisms (action insertion, matching between predicates, backtracking, checks of violation
of causal links, variable instantiation, etc.). Neural networks can implement any
computational mechanism that can be implemented with a computer (McCulloch and Pitts
networks are equivalent to finite automata: Rojas, 1996, p. 43). However the most interesting
properties of neural networks such as generalisation, fault tolerance, and prototype extraction,
can be obtained only if neural networks use distributed representations and parallel processing
(cf. s. 4.4). For these reasons neural networks are not suitable to implement mechanisms that
operate on local representations as those necessary for the preconditions and effects used in
STRIPS reasoning.

Given these difficulties, this research has chosen to refer to a concept of state as a whole,
and to use neural networks that decompose the input patterns in terms of “features” instead of
logical propositions. However, the problem of how parsing the state representation to isolate
“relevant” aspects so as to improve the flexibility and efficiency of intelligent systems,
remains an important open problem when implementing neural planners.

2.4 STRIPS Planning: Conditional Planning, Execution Monitoring,
Abstract Planning

The Partial Order Planner is based on the assumption that in a first stage a plan can be
usefully generated and then it can be executed. Many environments of real problems do not
allow to use this strategy because they have the following features (Russell and Norvig, 1995,
p. 46):
• They are inaccessible (or “partially observable”, cf. also s. 13.2.2): the sensors of an

agent do not detect all the aspects of the environment that are relevant for the selection of
actions.

• They are stochastic: the next state of the environment is not completely determined by the
current state and action (inaccessible environments are always stochastic to the eyes of
the agent).

33

• They are ill detected and acted upon: the information returned by the sensors and the
execution of actions through the effectors are affected by noise.

• They are dynamic: the world continuously changes while the agent is deliberating and
acting.

• They are continuous: percepts and commands to effectors are not limited in number,
distinct, and clearly defined (in which case they would be “discrete”). Rather they are
encoded with vectors of continuous values.

When the environment has some of all of these features the results of the execution of actions
can be different from the expected ones. This implies a serious challenge to planners as the
partial order planner. Two solutions to this problem have been proposed that imply a
modification of the partial order planner: conditional planning and execution monitoring.

2.4.1 Conditional Planning

Conditional planning (Warren, 1976; Linden, 1991) deals with uncertainty by taking into
account the possible situations that might arise during the execution of the plan. “Sensing
actions” are used for this purpose. These actions allow the agent to gather information about
the current state of the environment, so as to execute the appropriate part of the plan.

The plans are generated with mechanisms similar to the ones shown for the partial order
planner. The main difference is that there are “conditional links” that can be created by
inserting a sensing action to satisfy unsatisfied preconditions. When executed, a sensing
action returns a “context”, i.e. a statement hold to be true (or, in the more complex case of
“parameterised plans”, a parameter) and used to match an unsatisfied precondition. The
context is inherited by the following actions until the last step.

When a sensing action is inserted, an alternative plan has to be built for the case the
sensing action returns the alternative context (the negation of the first one). This is done by
inserting a second finish step that is a copy of the original but differs from it for having this
alternative context (this is similar to a further goal to satisfy). This second branch of the plan
is built with the usual mechanisms. Notice that for each sensing action inserted an alternative
branch of the plan has to be generated.

2.4.2 Execution Monitoring and Replanning

Execution monitoring offers another solution to deal with uncertainty. It is based on the idea
of “re-planning”: the agent formulates a plan, executes it and monitors the consequences of
the actions, re-formulates and adjusts the plan when the consequences of actions are different
from the expected ones. An example of this strategy is IPEM, Integrated Planning Execution
and Monitoring System (Ambros-Ingerson and Steel, 1988). In IPEM planning and execution
are fully integrated. IPEM has many aspects in common with the partial order planner. At a
general level, the main differences are the following ones. After the execution of each action
the agent carries out the following operations:
• The agent updates the internal representation of the environment. The updating of the

internal representation of the environment is done on the basis of perceptions. This
representation makes up the new start state for the agent.

• The parts of the old plan that are no more applicable are deleted. This is done on the basis
of the new representation of the environment.

• The plan is updated through mechanisms similar to the ones showed for the partial order
planner.

34

Notice that in its pure form, re-planning and execution monitoring are based on a rigid plan,
so that any slight divergence from it triggers the re-planning process.

2.4.3 Abstract Planning

An important chapter of the planning literature is the one on abstract planning (Sacerdoti,
1974; Russell and Norvig, 1995, pp. 371-385). Abstract planning has been motivated by the
observation that the number of “primitive operators” (the operators that can be directly
executed by the agent's effectors) needed to make up a plan to solve many real problems is in
the order of hundreds or thousands. In these cases the planners reviewed so far cannot find a
solution in a reasonable amount of time. Abstract planning has proposed to solve this
difficulty by using “hierarchical decomposition”. This uses the concept of “abstract operator”.
An abstract operator can be decomposed into a group of steps that forms a plan that
implements the operator. Eventually the decomposition can lead to have all primitive
operators. This decomposition can be stored in a library of plans and retrieved when needed.
To implement this strategy it has been necessary to extend the STRIPS language to allow to
handle abstract operators, and to modify the planning algorithms to allow for the replacement
of the abstract operators with their decomposition.

2.4.4 Critical Observations

The major drawback of conditional planning is that the number of possible conditions to take
into considerations grows exponentially with the number of actions, so that for many realistic
tasks it soon becomes impossible to take into account all possible situations that may arise
while executing the plan. Execution monitoring has also some drawbacks, as it produces very
fragile plans that require frequent replanning. Replanning can also be very expensive, for
example when one gets a puncture and does not have a spare tyre. Having “spare tyres” in
cars is the result of a conditional planning process rather than of a replanning process (Russell
and Norvig, 1995, p. 407).

These considerations suggest that better solutions fall between the extreme cases of full
conditional planning (or “universal planning”) and full replanning. A desirable solution would
be a planner that on one side builds up a plan that can deal with the most likely outcomes of
its execution and on the other side is capable of replanning when the less likely situations are
encountered. This is what the planners designed and implemented in chapter 8 and 9 do.

The issue of abstraction is a crucial issue for any planning system. Planning expresses its
full power in comparison to reactive behaviour when it is applied to long-lasting tasks, and
when it can operate on the basis of abstract operators. It is not easy to find a way to
implement the concept of macro-operator with neural networks because it is difficult to find a
neural correspondent of the process of “abstraction” in general. Chapter 11 starts to explore a
possible simple solution to this problem.

2.5 STRIPS Planning: Probabilistic and Reactive Planning

The previous sections have stressed how important it is that planners are capable of dealing
with incomplete and erroneous information, and with unexpected stochastic outcomes of
actions by reacting appropriately to the current situation. This section reviews four planners,
the BURIDAN planner algorithm, reactive planning (universal plans), decision theoretic
planning, and Maes' planner, which go in this direction. The BURIDAN planning algorithm is
interesting because takes into consideration probabilities, and therefore represents a bridge to

35

Markov decision processes analysed in s. 13.2 (cf. also the C-BURIDAN planner, Draper et
al., 1994; and the MA planner, Ma and Doran, 1993). Reactive planners are interesting
because they take to the extreme the idea underlying conditional planning, that of considering
what to do in the case of different possible outcomes of actions. Interestingly, they have been
shown to be equivalent to Markov decision processes. Decision theoretic planning is relevant
because it is based on Markov decision processes, but makes use of decision trees, whose
nodes are the state-variables, to represent transition functions, value functions and policies.
Decision theoretic planning are based on the idea, inspired by STRIPS-like planning, that
actions affect few state variables. Finally Maes' Planner is interesting because it presents a
reactive planner that works on the basis of connectionist-like activation diffusion, and can be
considered a bridge between the STRIPS planning systems and the connectionist “activation
diffusion planners” (cf. s. 4.5.1).

2.5.1 BURIDAN Planning Algorithm

The BURIDAN planning algorithm (Kushmerick et al., 1994) assumes that the agent has
incomplete information about the initial state and actions with stochastic (known) effects. The
algorithm produces a plan that reaches the goal with a probability over a certain threshold,
starting from a probability distribution over initial states. A state is described as a set of logic
propositions. The actions are defined in terms of preconditions and effects produced with
given probabilities. These probabilities depend on the value of the preconditions at the
moment of execution of the actions. Given a plan, i.e. an action sequence, it is possible to
compute the probability that it leads to the goal. A plan with a probability of success greater
than the threshold is built by using mechanisms similar to the ones described for the partial
order planner (action insertions, causal links, promotion, etc., cf. s. 2.3.2) modified to take
into consideration the stochastic nature of actions.

2.5.2 Reactive Planning and Universal Plans

The idea exploited by reactive planning (Schoppers, 1987; Schoppers, 1989) is to abandon
altogether any commitment to any particular sequence of actions. At execution time the
current situation is classified, and the response planned for that kind of situation is performed.
This can be done because the plan generates conditional advice of the kind: “IF a condition P
arises AND you are trying to achieve goal G THEN the appropriate response is action A”.
The class of problems that the agent is capable of facing is specified only by the goal. No
initial state is needed: the plan allows the agent to achieve the goal from any initial state. The
plan is hence called a “universal plan”. At planning time, the planner builds a universal plan
by back-chaining from the goal conditions, using the effect descriptions as goal reduction
operators. Back-chaining terminates when the satisfaction of the preconditions being
examined or a contradiction is achieved.

2.5.3 Decision theoretic planning

Planning under uncertainty can be modelled through Markov decision processes (see s.
13.2.1). Planning problems commonly possess “structure” in the transition probabilities, value
functions and policies in the sense that many states have similar or same transition
probabilities / values / policy actions. If states are represented with state variables, this means
that few variables are usually necessary to correctly predict / yield those transition
probabilities / values / policy actions. Decision theoretic planning (Dearden, 2001; Boutilier et

36

al., 2000) assumes a finite number of states for each state variable (e.g. two values in the case
of Boolean variables) and uses decision trees to represent states’ transition probabilities /
values / policy actions. This allows decision theoretic planning to exploit the structure
mentioned since decision trees can abstract over state-variables.

To illustrated the key ideas of decision theoretic planning, let us consider the problem of
representing the transition probabilities in a compact form. When an action is executed, few
state variables (“children”) might change their values each depending on the values of few
other variables (“parents” of the child). The dependencies of each state-variable (affected by
the action) from its parents can be represented by one decision tree. A node of this tree
represents a parent, the edges of a node represent the values that the parent node can assume,
and the leaves (assuming Boolean variables) represent the probability that the child variable to
which the tree refers is true. In this data structure a branch of the tree, from the root to a leave,
represents a particular set of states where the variables corresponding to the nodes of the
branch have the particular values corresponding to the edges of the branch, and the variables
not present in the branch can assume any value. The reward function, the value function and
the action policy can be represented by three trees of the same type, but whose leaves
respectively represent the probability of getting the reward, the values, and the actions, again
associated to the states’ regions represented by the different branches of the tree. The key idea
of these type of representations is that they are particularly compact (e.g. compared to the
tabular representations, see s. 13.2.8) since state representations of trees abstract over
variables. This is made possible by the circumstance for which many states have the same
transition probabilities / values / policy actions.

By using these tree data structures, the fundamental algorithm proposed by theoretic
decision planning allows computing (“regressing”) the tree that represents the expected value
of performing a particular action a at the various states (the Q values, see s. 13.2.1), given a
particular evaluation tree (the V values, see s. 13.2.1). To give an idea of how it works, let us
consider a starting evaluation tree tree(V0) corresponding to the simple reward tree, that says
which variables are relevant to achieve the reward, and let us assume that we want to compute
the Q tree tree(Qa

1) corresponding to tree(V0) and the execution of action a (one step
regression). The idea exploited by the algorithm is that if the transition probability tree and
the reward tree are available, it is possible to find out the variables which the variables
important for the reward depend on. This information allows building a tree (called
“probability tree”) that “factors”, i.e. partitions the state space into regions reached with the
same probability, under the execution of a, and having the same value indicated by tree(V0).
Then, on the basis of the probability tree, and taking into account the discount coefficient and
the reward itself, it is possible to build tree(Qa

1). More in general, given any value tree
tree(Vk) and the transition probabilities’ tree, the same mechanisms allow building tree(Qa

k).
Given a value function Vk, these ideas can be exploited to produce a new value function Qπ

k+1
that represents the value of executing the policy π for one step and receiving terminal values
based on Vk. In fact for a value tree tree(Vk) and a policy tree tree(π), we can generate
tree(Vπ

k+1) that is just tree(Qπ
k). This is the key step that can be exploited in successive steps

of “policy evaluation” (see s. 13.2.4). Steps of policy evaluations and policy improvements,
that make the policy greedy with respect to the estimated value function, yield a “policy
iteration” algorithm (see s. 13.2.4) that can be used for planning. Notice that each step of
policy evaluation generates different tree(Vk) that reflect a factorisation of the state space into
regions with same values. Hence, the whole algorithm both updates the structure of these trees
and the values at the leaves.

37

2.5.4 Maes' Planner

The planner proposed by Maes (1989, 1990, 1991) represents actions with the STRIPS
template. In addition each action is characterised by an “activation value”, a real number used
to decide if the action is triggered and executed. Three kinds of connections make up the
architecture of the system:
• The signals coming from the sensors are converted into a set of predicates. Each action is

connected with the sensors, and receives a bottom-up activation from them. This
activation is proportional to the number of the action's preconditions that match the
“sensorial” predicates.

• The system has a set of goals to satisfy expressed in form of predicates. Each action is
connected with the goal system, and receives a top-down activation from it. This
activation is proportional to the number of the action's effects that match the goal
predicates. Eventually the activation from the goal is also proportional to the importance
given to the goal at the moment, e.g. if the goal is ingest_food and the agent is very
hungry. In this way the system is capable of dealing both with “cognitive goals”, e.g.
represented by predicates, and “motivations”, e.g. represented by the intensity of “needs”.

• Actions are also connected by bidirectional connections between them. The intensity of
the connections between two actions is proportional to the number of their preconditions
and effects that match.

The system works as follows. The sensors and goals send their activation to the actions with
which they are connected. The activation of each action decays according to a certain rate,
and is transferred (in a certain percent) to other actions both through the backward and
forward connections. As a consequence the actions' activation accumulates while time
elapses. When all the preconditions of an action are satisfied and the action's activation
overcomes a certain threshold, the action is triggered and executed.

2.5.5 Critical Observations

The BURIDAN planning algorithm and other planners that try to incorporate the probabilities
of different outcomes in their reasoning process have the strength of focussing planning on
the most likely outcomes of the plan execution. This is an important feature that will be
incorporated in the planners designed and implemented in chapter 8 and 9.

“Universal plans” were developed as a general scheme for reactive planning. However
they turned out to be a rediscovery of the idea the “policy” of the Markov decision processes,
presented in chapter 3 (Russell and Norvig, 1995, p. 411). Markov decision processes are at
the core of the planners designed and implemented here. It is very important to mention that
universal planners have an important drawback (Ginsberg, 1989). This drawback affects any
kind of planner that is based on “compilation” of reactive plans before action execution
(“reactive planning”), so it is also relevant for the planners proposed here, based on Dynamic
Programming and Markov decision processes. The drawback is that given a goal, a universal
plan has to be capable of deciding what to do in any situation that may arise during the plan
execution. This implies that the situation→action rules to prepare increase exponentially with
the size of the problem space. After all the biggest advantage of planning versus reactive
behaviour is precisely that planning allows to decide what to do when it is actually needed.
Reactive planning ignores this point. For example even a simple simulated robot as the one
considered here has 50 binary sensors, so the number of the possible situations that it can
sense is huge, 250. This causes major difficulties both to generate and to store all the possible
situation→action conditions: the time and space complexity increase exponentially with the

38

problem space. Three solutions have been proposed to face this problem: (a) function
approximation (Sutton and Barto, 1998, p. 193; cf. s. 13.2.8); (b) focusing the planning
activity on the relevant areas of the problem space (Sutton and Barto, 1998, p. 246; cf. s. 3.4);
(c) replanning when necessary (cf. s. 2.4). These solutions are exploited in the planners
proposed in chapter 8 and 9.

Decision theoretic planning represents an important bridge between classic STRIP-like
planning and planning based on Markov decision processes. It offers an important extension
of dynamic programming to the cases where states are represented by state-variables
(“features”). The theoretical analysis behind the algorithms proposed by decision theoretic
planning gives an important contribution to explaining how different features play different
roles in the prediction of values, and how this “structure” of the problems might be exploited
through space abstraction. On the other side, decision theoretic planning implements
abstraction over features by complex mechanisms that work on the single features so that they
might not scale well to cases with many features. For example, for each policy evaluation step
the evaluation tree needs to be modified on the basis of the previous evaluation tree, the
reward tree and the transition function tree. This means that the data structure storing the
values needs to be modified. This approach might be inefficient compared to alternative
algorithms and data structures that work on features in parallel and “weight” the importance
of features for values’ prediction by only changing parameters. For example in the case of
neural networks usually only the weights are changed, while the data structure, i.e. the
network architecture, is not.

Maes' planner implements planning by spreading the activation backward from the goals
and forward from the sensors through the network of actions. This activation generates chains
of actions highly activated that connect the two “extremes” of the current state and the goal.
These chains are then executed according to the satisfaction of their preconditions and level of
activation. Maes' planner is interesting because it is quite original and because it is taskable
(cf. s. 5.1). However, it is important to notice that the principle underlying its functioning is
very similar to the one used by activation diffusion planning (cf. s. 4.5.1). The fact that Maes'
planner considers operators instead of states as activation diffusion planning does, is not very
relevant. In fact it is possible to find close correspondences between the two systems. The
backward activation has a role similar to the activation diffusion of activation diffusion
planning, i.e. activating the operators with a decreasing intensity on the basis of their distance
from the goal. The forward activation causes an accumulation of activation of the operators
that corresponds to the current state. This is equivalent to the triggering of the operators in
activation diffusion planning. For these reasons Maes' planner can be considered a sort of
dynamical implementation of activation diffusion planning (cf. Tyrrell, 1994, for the
limitations of Maes' planner).

2.6 Navigation and Motion Planning Through Configuration Spaces

The planning methods reviewed in this chapter, but also those reviewed in chapter 3 as
dynamic programming, are based on discrete representations of states. This causes difficulties
when they are applied to robotic problems as navigation or motion planning. In fact these
problems imply continuous state variables. Configuration spaces are general mathematical
tools that can be used to implement planning with states described by continuous state
variables (Yoshikawa, 1990; Russell Norvig, 1995, pp. 790-808).

The state of a robot can be described with k real values. Each value indicates the state of
one of the k degrees of freedom of the robot, for example the (x, y) position of the robot in
two-dimensional space, or the angles formed by the links of the robot's arm. The k values can

39

be considered as a point in a k-dimensional space C, called the “configuration space” of the
robot. If O is the set of points in C for which any part of the robot bumps into or “is inside” an
obstacles, the set difference F = C - O is called “free configuration space”. Assuming an
initial point s1 and a goal point s2, the robot can safely move between the corresponding points
in physical space if and only if there is a continuous path between s1 and s2 that lies entirely in
F. Planning through configuration spaces implies finding one path that satisfies this condition
and also some efficiency criterion, such as the shortness of the path.

A planning method based on configuration spaces is called “cell decomposition”. This
method is based on the identification of some “cells” within F. The cells are contiguous.
Planning is implemented as a discrete search problem on these cells. An alternative method is
called “skeletonization”. This method collapse the configuration space into a one-dimensional
subset called a “skeleton”. A skeleton is a graph with a finite number of vertices connected by
links. Both vertices and links lie within F. A “path” is planned by using a (graph) search
method applied to the skeleton. If the start and/or the goal points do not lie on the skeleton, it
has to be possible to easily compute short path segments between them and the nearest point
on the skeleton.

40

3 Markov Decision Processes and Dynamic Programming

It has been suggested (Sutton and Barto, 1998, p. 66 and p. 89), that Markov decision
processes (Puterman, 1994) are the best framework with which reinforcement learning
problems can be presented and investigated, and that dynamic programming (Bertsekas, 1995)
furnishes sound theoretical foundations to it. Appendix 2, s. 13.2, presents the mathematical
details of the parts of Markov decision processes, reinforcement learning and dynamic
programming that are the starting point for the controllers presented here, or are important for
the issues analysed in the following chapters. This wide appendix is justified by the fact that
the issues presented in it, though available in some textbooks and articles, are quite specialist,
so the reader might not be familiar with some of them. The reader that is already familiar with
the material presented in appendix 2 is invited to consider only the mathematical symbolism
used in it since this symbolism is used throughout the thesis.

This chapter will focus on few relatively new aspects of Markov decision processes,
reinforcement learning and dynamic programming, that are quite central for this research. S.
3.1 will present the restricted class of Markov decision process considered in this research. S.
3.2 will presents some critical observations on dynamic programming and its relationship with
heuristic search. S. 3.3 will present the Dyna architectures, and in particular the Dyna-PI
architecture, that are the starting point for the controllers studied in the next chapters. Finally
s. 3.4 will analyse some techniques that allow reinforcement learning controllers to focus
planning activity on restricted areas of the state space.

3.1 The Problem Domain Considered Here: Stochastic Path-Finding
Problems

The controllers presented in this thesis apply to a restricted class of Markov decision
problems called “stochastic shortest-path problems” (Barto et al., 1995). Given that this
research does not put a stress on the optimality of the algorithms proposed, the expression
“stochastic path-finding problems”, or simply “ path-finding problems”, will be used
henceforth. What will be required for the algorithms is to yield a “satisfactory” performance.
As an empirical rule, the performance will be judged as satisfactory if the “length” of the
solution (path) found is much shorter than the solution found by a random walk, and about
twice or less the size of the optimal solution in the absence of noise during action execution.
An approximate measure of the optimal solution can be easily computed knowing the size of
the simulation scenario, the size of the single moves of the simulated robot, and the start and
goal states in the scenario. All these elements will be furnished in the second part of the
thesis.

In stochastic path-finding problems, the reward is equal to 1 (or, in general, to a fixed
value) for a unique goal state sg, and equal to 0 for all other states:

 MR[sg] = 1 MR[s] = 0 ∀ s ≠ sg Eq. 3.1

where MR[.] is the reward function.

41

In the typical simulation, the simulated robot aims at finding a policy that takes it from an
initial state si to the goal state sg with the minimum number of steps. When the simulated
robot reaches sg it is set again at si and a new trial begins (these are also called “episodic
tasks”, cf. Sutton and Barto, 1998, p. 60). In some other experiments when the simulated
robot reaches the goal it is set at a different initial state. It is assumed that xg, the vector of
signals returned by the simulated robot's sensors at the goal state, is known by the simulated
robot (e.g. stored in a suitable data structure/memory), while xi, corresponding to the initial
state, is directly perceived. Notice that when the robot stops acting to re-plan (cf. s. 8.3.2), the
new start state xi is the current one.

A second class of stochastic path-finding problems considered in the thesis implies
multiple goals achieved asynchronously. “Asynchronously” here means that at each moment
the simulated robot is pursuing only one goal. In the thesis two variants of a multi-goal
navigation stochastic path-finding problem are considered. In the first variant the simulated
robot pursues the same goal several times, and is assigned another goal only after several
successes with the first one. At each success the simulated robot is set at a start state or at
some other state randomly drawn. In the second variant of the problem, a new goal is assigned
to the simulated robot after each success. This new goal is randomly drawn from a set of
goals. In this case there is no need to reset the simulated robot in new state: the state of the
goal just reached is the starting state from which the simulated robot pursues the new goal. As
we shall see, these variants of the problem are considered in different part of the thesis to
investigate different aspects of the controllers.

Now some aspects of the multi-task problems are formalised because they are particularly
important to clarify the concept of “taskability” (cf. s. 5.1). At each moment the simulated
robot pursues the goal state sg

 ∈ Sg
 ⊂ S assigned to it, where Sg is the subset of states used as

goal. The simulated robot's task is to reach the goal from a start state si
 ∈ S. In the case of

stochastic policies, finding a solution to the problem requires finding a suitable mapping from
the current state, goal and the available actions a ∈ A, to the probabilities of such actions (cf.
s. 13.2.3):

 (S × Sg × A) → [0, 1] Eq. 3.2

In the case of deterministic policies, finding the solution of the problem requires finding a

suitable mapping from the current goal and state to suitable actions:

 (S × Sg) → A Eq. 3.3

It is very important to notice that when the simulated robot pursues only one goal during

its existence, then the mappings to learn are the ones of Eq. 13.4 or Eq. 13.6. These mappings
are much simpler than the mappings of Eq. 3.2 and Eq. 3.3 thanks to the fact that they do not
require considering the information about the goal pursued. In the case of stochastic policies
the simulated robot has “simply” to assign a proper probability distribution to the actions, and
to select one action on the basis of this distribution, on the basis of the state. In the case of
deterministic policies, the simulated robot has to select a proper action on the basis of the
state. This fact is very important because in some circumstances it renders planning agents
much more efficient than reactive agents. In fact in order to solve multi-goal tasks reactive
agents have to learn the complex mapping of the kind S × Sg × A → [0, 1] (or S × Sg → A)
i.e. a mapping for each possible goal pursued. Instead, planning agents can once and for all
learn and store knowledge in the model of the environment, that is independent of the
particular goal pursued. Then they can dynamically build the necessary mapping S × A → [0,

42

1] (or S → A) on the basis of this knowledge. This is the core idea underlying the concept of
“taskability” (cf. 5.1). Chapter 8 will show how it is possible to modify the basic Dyna-PI
architecture to make it fully taskable.

Before closing this subsection, it is important to stress that the one-goal problems
considered here are more restricted than the ones considered in classic artificial intelligence
planning. In fact the planners of this literature usually specify the goal as a set of abstract
properties that the desired state has to satisfy. This implies that the goal is actually a set of
states. Given the difficulties that current neural-network models encounter in dealing with
abstract representations of states, this research focuses on the simple case where a goal
corresponds to a single state (with the tolerance of some noise).

3.2 Critical Observations on Dynamic Programming and Heuristic Search

This section presents some critical observation on dynamic programming and its relationship
with heuristic search analysed in Appendix 2, s. 13.2.9, 13.2.10, and 13.2.11. One of the
reasons dynamic programming (cf. s. 13.2.9 and 13.2.10) is an important machine learning
method is that it uses policies instead of plans. This allows agents to deal with noisy
environments where the effects of the actions are stochastic. In fact, whatever the effects of
the previous action executed are, the selection of the new action will be optimal with regard to
the current state, and will not be committed to any previous decision (cf. s. 5.3 for a summary
of the advantages and disadvantages of plans and policies).

Trial-based real-time dynamic programming (cf. s. 13.2.11) represents an improvement
of the idea of policy because it allows the agent to focus the backups on few relevant states,
and to prepare “partial policies”, i.e. policies that work well only for few states (a random
action is used for the other states). However it is still not fully satisfactory because for certain
environments too many state could be reached under the execution of the optimal policy, even
if these events occur very rarely. For example, in the simulation scenario used in the
following chapters the effect of one action is a movement toward a destination point, but the
actual point reached has a Gaussian distribution around the destination point. This means that
in theory all the possible points of the arena could be reached with one movement, in practice
this means that the points far from the destination point are never reached during the
simulations. So why should the system worry about them? The solution to this problem is to
take these probabilities into consideration in some ways. This is the solution adopted in the
controllers presented in the next chapters. There the system “simulates” the possible effects of
action execution, i.e. the states reached given the “noise” of the policy and the noise of the
effects of action, and prepares a policy only for states that are more likely to be visited during
the use of the policy itself. Incidentally, notice that the noise of the actions' effects are actually
not “simulated” by the system when planning because the model of the environment is
deterministic. However, this is a problem caused by the particular implementation of the
model presented here, not by the general functioning of the planner.

The equivalence between trial-based real-time dynamic programming and learning real-
time A* (cf. s.13.2.11) is important because it builds a bridge between the two important
fields of heuristic search and dynamic programming. Notice that it has been possible to show
a full equivalence between the two techniques because learning real-time A* learns the
heuristic with experience (it does not necessarily require a heuristic a-priori as the majority of
the other heuristic-search methods do, cf. s. 13.1.2).

Most importantly, the equivalence shows that dynamic programming and heuristic search
are based on a gradient field of heuristic values or evaluations over the states. In s. 5.2 it will
be shown that “activation diffusion planning”, a kind of planning mechanism often used in

neural planners, is itself based on the idea of gradient field over states. This result will be used
to suggest that the idea of gradient field unifies many approaches relevant for neural-network
planning. In turn this will be shown to be a positive result for neural-network planning since
the idea of gradient field can be implemented in a straight forward way with neural networks.

3.3 Dyna Framework and Dyna-PI Architecture

Dynamic programming implies to carrying out full backups (cf. s. 13.2.9 and Figure 13.1).
Dyna architectures (Sutton, 1990; “Dyna” stands for “dynamic programming”) integrate the
idea of dynamic programming, i.e. computing the state-evaluation function on the basis of a
model of the environment, and the idea of reinforcement learning methods, i.e. computing the
state-evaluation function on the basis of sampling backups (cf. s. 13.2.9 and Figure 13.1;
Sutton and Barto, 1998, p. 243). Sample backups bring faster convergence because they
explore states in depth rather that in width while updating the evaluations of states. This
favours quick “propagation” of evaluations from the states with high evaluations/rewards
towards other states (Sutton and Barto, 1998, p. 245-246).

Figure 3.1: A typical Dyna arch
function plus the policy) can b

The architecture of an age

Sutton, 1990). When the reinfo
architecture is called “Dyna-PI”
of the actor-critic methods, cf. s
learning (Watkins and Dayan, 19

The components of the ar
structure (as in a standard reinf
defined in s. 13.2.1 (the prob
functioning of the architectur
reinforcement learning architect
are based on real experience. A

PolicyState-evaluation
function

e

Environment
t
Model of Environmen
43

itecture. The reactive part of
e trained either through a mod
experience in the environme

nt with a dyna architectur
rcement learning method u
. “PI” stands for “policy i
. 13.2.6. Another dyna arc
85), is “Dyna-Q” (Sutton,

chitecture are the state e
orcement learning agent) p
ability transition function
e is simple. The archite
ure, in which case the upd
lternatively, it can functio
Action
Stat
Reward
TD-error
Switch
the controller (the state evaluation-
el of the environment, or through

nt.

e is represented in Figure 3.1 (cf.
sed is the actor-critic method, the

teration”, the algorithm at the core
hitecture, based on the popular Q-

 1990).
valuation function and the policy
lus a model of the environment as
 plus the reward function). The
cture can function as a normal
ating of the evaluations and policy
n as a planner, in which case the

44

updating of the evaluations and policy are based on simulated experience generated through
the model of the environment.

In general the simulated experience is generated as follows (as an example, the case of
the actor-critic methods is considered, cf. s. 13.2.6). Given a state st, the policy selects an
action at. This action, together with the state st, is sent to the model of the environment, that
returns the expected new state st+1 and the reward rt+1 as consequences of that action. The
states and the selected action can be used to train the evaluation function and the policy in the
same way it is done with standard reinforcement learning. This means that st and st+1 are used
by the evaluation function to return V'π[st] and V'π[st+1]. In turn these values, together with the
“predicted” reward rt+1, are used to compute the error et. Finally this error is used to update
both the evaluation function and the policy (cf. s. 13.2.4, 13.2.5, and 13.2.6).

The states as st used to generate “simulated experience” can be generated in different
ways. For example they can be generated at random from the set of possible states. Or, given
an initial state, they can be generated by using the states predicted by the model of the
environment, plus the actions selected by the policy, to predict other states in sequence (cf.
trajectory sampling, s. 3.4).

If the evaluation function and policy are trained for some time through simulated
experience generated by using the model of the environment, they improve their competence
to evaluate and act in the environment. For this reason this training, together with the use of
the model of the environment, can be regarded as a form of planning.

3.3.1 Critical Observations

Dyna-PI architectures are type of “compiling planners” (cf. Mitchell, 1990) because the
outcome of planning is not directly used for acting, but is store in the reactive components
(memory structures) of the system. When the system passes from planning to action
execution, what it does is simply to act on the basis of the reactive components. The
alternative is a planning system where the outcome of planning is kept in a temporary
memory structure, is used to act, and then is eventually incorporated into the reactive
components to be retrieved at a later time when a similar situation is encountered.

Compiling planning has the advantage that the outcome of planning is directly stored in
the “most usable” form, i.e. into reactive components, and is permanently incorporated in the
skills of the system. This produces the nice property of Dyna-PI architectures for which both
planning (if based on a good model of the environment) and acting, contribute to improve the
evaluations and the policy, no matter when they are executed. Compiling planning has also
the advantage that no extra memory structures are needed to temporarily store the outcome of
planning.

Unluckily, compiling planning has also some disadvantages. In particular if the planning
process generates several possibilities of low quality before arriving to a good policy, and the
reactive memory structures are used as “working memory”, the contents of the skills could be
damaged by the planning process. This is particularly important if neural networks are being
used, because these are prone to suffer of “catastrophic interference”: the temporary storage
of any noisy/useless information tends to damage the contents of the existing memory (s.
4.4.1). In this case it would be better to store temporary policies in buffer memory structures,
and then transfer only some of them to the long-term reactive memory structures at a second
time, after they have proven their quality in the environment.

45

3.4 Prioritised Sweeping and Trajectory Sampling

Prioritised Sweeping. We have just seen that any simulated experience generated improves
the evaluations and policy, if the model of the environment is enough accurate. However the
methods used to generate such simulated experience greatly influence the convergence speed
of the process, because it can focus the updating of the evaluations and policy on “relevant” or
“marginal” regions of the state space.

Consider problems where states are represented as whole discrete entities, i.e. not by state
variables or features (cf. s. 13.2.8). In these cases “prioritised sweeping” can be used (Moore
and Atkenson, 1993; Sutton and Barto, 1998, p. 239) to improve the speed with which the
evaluation function and the policy are updated.

Prioritised sweeping is a method based on a relatively simple idea. For example consider
the popular case of Q-learning (cf. s. 13.2.4 and 13.2.5): if the evaluation of one state-action
pair changes a lot, then the evaluation of its “predecessors” (the state-action pairs that have
led to the state at least one time in the past) would change a lot if updated. To exploit this
idea, the system keeps a queue of the Q values to be updated in decreasing order of “priority”.
The priority of a state-action pair is defined on the basis of the amount of change that its Q
value would undergo if updated, and on the basis of the transition probability from this state-
action pair to the successor. At each cycle the state-action pair with the highest priority in the
queue is updated. Then the priority of its predecessors is computed, and the state-action pairs
with priority over a certain threshold are inserted in the queue. At each cycle a given number
of these updates (and predecessors' insertion in the queue) is carried out.

Although the original formulation of prioritised sweeping assumed whole states, further
research has proposed alternative formulations capable of working with state variables
(Wiering et al., 1998; Dearden, 2001). These alternative formulations keep trace of the
dependencies between the single state variables. On the basis of these dependencies,
prioritised sweeping is applied to the “predecessor” variables closely linked to those variables
whose value is significantly updated.

Trajectory Sampling. Another interesting way to focus search on relevant regions of the
problem space is “trajectory sampling” (Barto et al., 1995; Sutton and Barto, 1998, p. 247). In
stochastic path-finding problems this sampling implies that planning starts from an initial
state, for example the current state, and generates a simulated sequence of states through the
current policy and model of the environment, until the goal state is reached. At the same time
it updates the evaluations and policy for the states encountered along the way. Sutton and
Barto (1998, pp. 247) report about a simple abstract problem used to compare trajectory
sampling with a “full sweeping” process, i.e. a systematic repeated updating of the
evaluations of all states. The experiment used undiscounted episodic tasks generated
randomly as follows. For each of the |S| states, two action were possible, each of which
resulted in one of b next states, all equally likely, with a different random selection of b states
for each state action pair. On all the transitions there was a 0.1 probability that the episode
ended. The expected reward on each transition was chosen randomly in a Gaussian
distribution with mean 0. The performance was measured in terms of the evaluation of the
initial state. The results of the experiment have shown that trajectory sampling has an
advantage and a disadvantage versus a “full sweeping” process in terms of speed of learning.
The advantage is that it ignores uninteresting parts of the space. The disadvantage is that
when the evaluations and policy become accurate, the same old parts of the space are backed
up over and over without improvement of evaluations and policy.

46

The idea of trajectory sampling is very important because it is exploited in the planning
controllers designed and implemented in the following chapters. However, it should be
noticed that its formulation, as presented in Sutton and Barto (1998, pp. 247), is incomplete if
used for path-finding problems. For example, it does not deal properly with the danger of
getting stuck in dead-ends, or with the problem of deciding when to plan and when to act.
Chapter 8 and 9 will propose and implement some solutions to solve these problems.

3.4.1 Critical Observations

The strength of prioritised sweeping is largely caused by the fact that it executes backups
backward from the states with high rewards associated towards other states. For example in
the case of stochastic path-finding problems it executes backups backward from the goal state.
In fact the predecessors of the states from which a high reward has been obtained receive a
high priority, so they are likely to be updated. Chapter 9 proposes and implements a planning
controller (neural bidirectional planner) that exploits an alternative idea: the backward
“propagation” of evaluations. It process works by generating sequences of states backward
from the goal and forward from the current state.

The strength of trajectory sampling derives from the fact that it focuses the search on the
states that the policy visits with a high probability. This seems a powerful idea that can be
implemented in a relatively easy way. The planners proposed and implemented in this thesis
are all based on this idea. The forward planner implemented in chapter 8 generates trajectories
of states starting from the start, so it focuses the search around it. The bidirectional planner
implemented in chapter 9 generates trajectories both from the goal and from the star, so it
focuses the search around them.

47

4 Neural-Networks

In this chapter the neural networks and algorithms used as “building blocks” to design the
planners presented in the following chapters are introduced. These are the classic “feed-
forward networks”, trained with the “backpropagation algorithm”, and the “mixture of experts
networks”, trained with an algorithm specifically designed for it.

4.1 What is a Neural Network?

What is an (artificial) neural network? It is difficult to give a precise definition, since a great
number of models have been proposed in the literature (cf. Haykin, 1999, for a wide review).
However, it is possible to identify some defining traits and some desirable traits of neural
networks that are particularly significant for this research. The defining traits are the
following ones:
• Architecture. The architecture of a neural network consists of a set of units linked with

connections. The units use the connections to exchange quantitative signals in a parallel
fashion.

• Processing. Each unit of a neural network is a simple device: it takes the signals from
some connected units, processes these signals in a simple way, and as a result sends a
signal to other units.

The desirable traits are the following ones.
• Local learning. The network can “learn”, i.e. some units change their processing

properties in time. If learning is present, it takes place on the basis of information
available locally to the unit. For example the “weights” of the connections of a unit are
updated only on the basis of the activation of the units directly connected with it. Local
learning is desirable since it does not require complicated architectures to carry learning
signals to the target units.

• Distributed representations. Information is represented in a distributed fashion on many
units and weights. This rules out the possibility of having “local representations” where
one weight or the activation of one unit represents a whole significant chunk of
information. A consequence is that the system cannot work as a “finite automaton” (cf.
Rojas, 1996, p. 43) processing information in a logical way. An example of this would be:
“If unit x is active it means that the environment state is s, if unit y is active it means that
the system is pursuing goal sg. If unit x and y are active then unit z is activated, and this
means that action a is selected”. Distributed representation of information is desirable
since is allows having the generalisation property of neural networks (see below).

• Noise. Each component of the system is capable of tolerating some amount of noise
(“fault tolerance”). This property usually relies on the fact that the system uses distributed
representations. Noise can even be an important ingredient of the architecture and
functioning of the system. This property is desirable since it implies that the disruption of
some components of the system is accompanied by a gradual degradation of performance
(“graceful degradation”, Rolls and Treves, 1998, p. 30).

48

• Local learning, distributed representations and noise tolerance are also desirable because
they increase the biological plausibility of neural networks.

4.1.1 Critical Observations

The design of the controllers presented in the next chapters has attempted to build neural
networks that posses all the traits illustrated in the previous sections. This has not always been
possible, in particular for two aspects of the controllers.

The first aspect concerns the learning algorithms used. Given the computational needs
met in designing the controllers, it has been necessary to use learning algorithms that violate
the third requirement and do not have a local nature. For example, this is the case of the
learning algorithms used to train the mixture of experts networks (Jacobs et al., 1991; cf. s.
13.3.2) used in chapter 7 and 10, or the use of the backpropagation algorithm (Rumelhart et
al., 1986; cf. s.13.3.1) in chapter 7: these are not local learning algorithms. The adoption of
these algorithms has been necessary because local learning algorithms currently known have a
limited computational power (cf. Rolls and Treves, 1998, p. 23-94).

The second aspect has been the control of the flow of information among the different
parts of the system. With some effort it has been possible to transform this algorithm into a
neural network that possessed the first two traits (this has been done for a simplified version
of the algorithm illustrated in Figure 8.3). This has not been a surprise since a constrained
class of neural networks, the networks of McCulloch and Pitts, are equivalent to a “finite
automaton”, i.e. they can be used to execute any kind of computation that can be executed by
a computer (Rojas, 1996, p. 44). The problem has been that the outcome of these efforts was a
neural architecture that did not posses the fourth and fifth traits, the use of distributed
representations and noise tolerance. As a consequence, the decision has been taken not to
transform the algorithms controlling the flow of information between the different neural
components into a neural network, but to leave them in the form of code.

This experience shows that there are some aspects of planning that require some precise
control mechanisms that resist an implementation with neural networks that satisfy the
“desirable traits” listed previously. Some examples of these aspects are these: “switching”
between acting and planning, controlling the flow of information between neural modules,
and switching different neural modules on and off. It remains an open question if there are
other forms of planning that do not require these precise control mechanisms, or if they are
necessary with any kind of planning. In the later case, the use of logical finite-automaton like
neural modules would be unavoidable.

4.2 Critical Observations: Feed-Forward Networks and Mixture of
Experts Networks

Feed-Forward Networks and Backpropagation. Feed-forward networks and the
backpropagation algorithm usually used to train them are illustrated in appendix 2, s. 13.3.1.
As mentioned, these neural networks, and the ones reviewed in s. 13.3.2, have been used as
building blocks for the neural planners designed and implemented in the next chapters. One
reason for which this has been done is that these neural networks have been extensively
studied, so their properties are quite well known. This made it easier to design more complex
controllers, as neural planners, on the basis of them. It also made it easier to understand the
overall behaviour of these complex controllers. Another reason for which those neural
networks have been chosen as building blocks, is that quite effective learning algorithms have

been proposed for them. As a consequence, if a system is built on the basis of them, its
learning capabilities can be quite effective.

A fundamental quality of these neural networks is that they have a feed-forward
activation. This means that the signals coming from the input propagate towards and
generates the output in a direct fashion. In the introduction it has been mentioned that
predictive planning is likely to require “looping” neural systems, i.e. neural systems where the
output of some component networks is fed back into the system itself. This feedback is
necessary because predictive planning requires that the prediction of the effects of actions'
execution, produced by some networks, be used to change the way the system acts in some
circumstances, and this “way” is itself “expressed” by other component networks of the
system. As we shall see, in the planning architectures designed and implemented here, these
looping processes are implemented with feed-forward networks that feedback their output into
the input of other feed-forward networks. In particular the basic architecture used in this
research to implement planning is showed in Figure 4.1.

Figure 4.1: Example o
com

This graph shows th

(the “actor”) are not ex
incorporates the model
“consequences” of these
temporarily disconnected
to produce the successive

Closing the issue o
recurrent neural network
These are feed-forward n
into the input. These netw
example to use the info
current one, to select the
the feed-forward networ
is the point stressed here
presented here where lo
back into the system’s in

Actor

Predictor

t
Prediction of actions'

consequences
Environment
Environmen
f “looping”
ponent neu

at, while p
ecuted in
of the en
 actions. T
 from the e
 prediction
f “looping
s proposed
eural netw
orks are a

rmation co
 current ac

ks used her
, they could
oping was
put units.
Action
49

neural architecture used to implement planning. The single
ral networks are feed-forward networks.

lanning, the actions “programmed” by a suitable network
the environment, but are sent to another network that
vironment (the “predictor”). This network predicts the
hese consequences are fed back to the actor, which is
nvironment. They are also fed back to the predictor itself
.
” neural networks, it is important to mention why the
 by Elman (1990) are not suitable to implement planning.
orks where the activation of the hidden layers is fed back
n effective way of implementing short-term memories, for
ntained in few recent input patterns, together with the
tion. These networks might have been used to substitute

e in order to have this type of memory. However, and this
 have not been used to substitute the overall architectures

necessary to learn to generate predictions and feed them

50

The backpropagation algorithm is a supervised learning algorithm. This implies that to
function it needs a “teaching output” that has to be furnished by an external “teacher”. This
would seem to limit the applicability of this algorithm to reinforcement learning systems
because these do not have a teaching output signal to use for training. However in chapter 7
we will see that in the case of the actor-critic reinforcement learning it is possible to employ
the backpropagation algorithm for the evaluator. In fact, in the case of the evaluator it is
possible to build an error signal of the kind shown in Eq. 13.21 (analogously it would be
possible to use a formula of the kind shown in Eq. 13.17 to implement Q-learning). It is also
possible to use the backpropagation algorithm for the actor. In fact it is possible to use 1 and 0
as teaching signals to respectively increase or decrease the merit (cf. s. 13.2.6), and hence the
probability, of the action that has been selected. The merits of the other actions are left as they
are as no information about how to change them is available. It is important to notice that, at
the level of the actor, previous research (cf. Lin, 1992) has shown that when a localist
representation of the actions is used (one unit for one action merit or Q value), it is better to
use a different neural network (e.g. a three layer feed-forward neural network) for each unit.
In fact this avoids interference problems and speeds up the learning process. Notice that the
localist representation of actions has been used throughout this research and is also used in the
majority of reinforcement learning studies.

Mixture of Experts Networks. As we shall see in chapter 7, one of the strengths of this
architecture is its capacity to avoid interference problems in the case of multi-goal tasks. This
architecture has this capacity because it uses different neural modules to deal with different
regions of the input-output space. This implies that when the weights of one module are
updated, the weights of other modules are not disrupted.

In the previous section we have see that, in general, it is possible to use a supervised
learning algorithm, such as error backpropagation, both in the case of the evaluator and the
actor. Unfortunately, while it is possible to use a mixture of experts network for the evaluator,
it is not possible to use it for the actor. In fact the algorithm used to train this architecture
needs the error signal of all the output units (cf. Eq. 13.50). In the case of the actor, this error
signal is available only for the action selected, so the learning rules of Eq. 13.51 cannot be
applied. As a consequence in chapter 7 and 10 the mixture of experts architecture is used only
to implement the evaluator, while a new hierarchical modular architecture is used to
implement the actor.

4.3 Neural Networks for Prediction Learning

This subsection reviews some works that have used neural networks as “predictors”, i.e. as
models of the environment. Nolfi and Tani (1999) present a work where a simulated robot
follows the wall of a room (stereotyped behaviour) and has to learn to anticipate the future
input patterns (vision of the wall). The neural architecture they use to this purpose is based on
a hierarchy of three-layer feed-forward networks that learn through the backpropagation
algorithm. The network of the lower level takes the current input pattern as input, and learns
to produce the following input pattern as output. The activation of the hidden units is sent to a
Kohonen network (Kohonen, 1982) capable of classifying the input into broad categories. The
classification made by the Kohonen network is sent into a second level network that learns to
predict how this categorisation changes. The authors show empirically that the second level
network is capable of predicting some regularities in the input flow (for example which room
is entered), that are abstract in terms of time and details, and that the first level network is not
capable of predicting.

51

Sequences learning problems are also tackled by Schmidhuber (1992). The neural
networks he proposes are based on this principle. A network is used to predict its next input
on the basis of the previous ones. Since only unpredictable inputs carry new information, a
second network, working on a slower and self-adjusting time scale, takes as input the inputs
that are unexpected by the first network. The performance of this system is superior to the
performance of other systems.

Duckett and Nehmzow (1999) present some experiments where a robot builds a graph-
based map. A neural network is used to predict the probability of existence of open spaces
(not yet in the map) in a given direction from a position occupied by the robot. Lee et al.
(1998) present a work where neural networks are used to build a model of the activation of the
sensors of a robot in an office, on the basis of the x, y co-ordinates of the position occupied.

4.3.1 Critical Observations

The works just reviewed are quite relevant for the work presented here. This may appear
strange because in some cases they focus on the prediction of the behaviour of aspects of the
environment independent of the agent's actions, or in other cases they focus on the prediction
of the consequences of a stereotyped behaviour of the agent. In the later cases the agent
always chooses the same action in correspondence to each state, so these cases are equivalent
to the former ones.

Nevertheless, the models reviewed are relevant for prediction within reinforcement
learning. In fact, as we shall see in chapter 8, reinforcement learning systems usually use a
small number of primitive-actions. This makes it possible to build a prediction model for each
action. In this case the single prediction model (neural network) is trained and used to predict
the consequences of one action only. This creates a situation equivalent to the situations
considered in the literature just reviewed where the agent is predicting the consequences of a
stereotyped behaviour.

4.4 Properties of Neural Networks and Planning

What are the characteristics of neural networks that may produce interesting results when they
are used for planning? Among the most appealing properties of neural networks there are the
following ones: generalisation (and noise tolerance, that is closely related with it), prototype
extraction, learning, parallel processing. Now these properties are considered in detail and
their relevance for planning explained. Notice that the discussion that follows focuses on the
particular kind of neural networks used here, presented in appendix 3, s. 13.3.1 and 13.3.2.
These are feed-forward hetero-associative networks. Feed-forward hetero-associative
networks are networks where the signal flow travels in one direction from the input to the
output units, and that are capable of learning to associate an output pattern to an input pattern
(Rumelhart and McClelland, 1986).

4.4.1 Generalisation, Noise Tolerance, and Catastrophic Interference

Neural networks' generalisation property is relevant for this research for a number of reasons.
The introduction set the constraint that the controllers designed here should be capable of
guiding a simulated robot interacting with a noisy environment. The interaction with the
environment through sensors and effectors can cause a combinatorial explosion of possible
sensory and motor configurations that cannot be dealt with one by one. Neural networks are
capable of dealing with this problem because, thanks to their generalisation capacity, they

52

discover “common structure” between different sets of input output associations, so that they
can compress information into the distributed representations based on the weights (cf. s.
13.3.3).

The problem of noise is correlated with the previous problems. The sensorial apparatus of
robots returns patterns that are affected by noise. The generalisation property allows neural
networks to deal with this problem because they can be trained with several input patterns and
still be capable or responding appropriately to versions of them corrupted by noise.

Unluckily, generalisation has also some costs. “Interference” is an important one.
Interference is caused by the same mechanism that underlies generalisation: the updating of
weights executed to learn an input-output association influences other input-output
associations. If the first association is dissimilar/not correlated with the second ones, this may
result in a negative effect in terms of error (Hinton et al., 1986). Interference is particularly
impairing when different sets of input-output associations are learned at different times, i.e.
the learning of the input-output associations of the sets are not interleaved. In fact, each time a
set is used to train a neural network for several times in a row, the information previously
accumulated for the other sets is disrupted (cf. Sharkey and Sharkey, 1995; Blanzieri and
Katenkamp, 1996).

A consequence of this is that when neural networks are used to control autonomous
robots, interference is particularly impairing. In fact different sets of input-output associations
generated by the interaction of the robots with the environment tend to be clustered in
different periods of time. This point is even more important if planning is implemented in a
way similar to what has been done in the following chapters. In this case, planning implies
that the controller focuses on the same goal for a long period of time before passing to another
goal (cf. s. 10.1). This focussing implies that a particular set of input-output associations is
learned several times before passing to another set.

4.4.2 Prototype Extraction

There is a property of neural networks closely related to the generalisation property and noise
tolerance: the capacity to generate prototype representations of the input patterns. Suppose
that a three-layer feed-forward neural network with sigmoidal units is trained with noisy
versions of some input-output pairs. If the original input pattern of some of the pairs is
presented to the network, the network will tend to return the original output pattern of the
pairs (without noise), even if it has never experienced them. The network has extracted the
“prototype” of the input-output associations and tends to suppress the noise. This property
mainly relies on the non-linearity of the neural network (cf. McClelland et al., 1986).

As we shall see in s. 8.4.3, this property is particularly important for the kind of neural
planners implemented here. In fact these planners generate simulated “mental walks”, i.e.
possible future sequences of states of the environment that the controller expects to observe
by following a particular course of action. As we have seen in s. 4.2 this generation of
sequences of states is implemented by using a neural network (predictor) whose output is
repeatedly fed back into its own input layer (together with the “programmed” action). Given
the numeric representations used by neural networks, there is the danger that noise
accumulates during this looping, so that the output becomes a meaningless noisy pattern not
corresponding to any state of the environment. We shall see that, thanks to the prototype
extraction property of neural networks, this danger is kept under control, and the coherence
between the patterns generated and real states tends to be preserved. In fact the patterns
generated tend to be prototypes (without noise) of the real states, i.e. the patterns that

53

correspond to real states tend to be “points of attractions” for the sequences of predicted states
generated.

4.4.3 Learning

One of the most appealing properties of neural networks is their capacity to learn. These
means that initially neural networks associate random output patterns to input patterns, if their
weights are drawn randomly as it is usually done, but with suitable training (cf. s. 13.3.1 and
13.3.2) they can learn to associate appropriate patterns with them.

Notice that learning is not necessary for planning. A neural planning system, with fixed
architecture and weights, could plan solely on the basis of the activation of its units. However,
in this case the designer would encounter the problem of how to find the weights of the neural
system. Learning, like other evolutionary/adaptive strategies, is a way to solve this problem.
In fact it is based on algorithms that automatically find the weights suitable for the problems.

Learning has positive and negative implications for planning. One positive implication,
connected with the point just mentioned, concerns the degree of autonomy (i.e. absence of
human intervention) that can be achieved with neural planners. By definition predictive
planning relies on information about the consequences that actions have on the environment,
incorporated in the “model of the environment”. In classic artificial intelligence the designer
usually hardwires such information in the system (cf. s. 2.1.1 and 2.3.3). The capacity of
learning makes it possible to design neural planners that build up their own model of the
environment autonomously through experience (cf. s. 4.5 for some examples of this).

One negative implication concerns the time required by learning. The majority of the
algorithms employed to train neural networks require that the neural network experience each
input-output association several times (Haykin, 1999, for a review). Each time the network's
performance improves of a small amount until it reaches a desired level. One remarkable
feature of planning is its flexibility and its “one shot” nature. For example, if we want to move
an object away from us, we can think one time about the consequences of pushing or pulling
the object, store in “one-shot” the output of this processing in some form of memory, and
select the proper action accordingly. This is not easy to implement with neural networks. In
fact few algorithms developed so far to train neural networks implement one shot learning
(these are usually based on some kind of Hebb rule, cf. Hebb, 1949, and Hopfield, 1982). The
problem is that the learning capacities of one-shot learning algorithms are usually limited and
imply the loss of the useful properties of generalisation, information compression, prototype
extraction, and noise reduction (Rolls and Treves, 1998, p. 33). Given that these properties are
very important, in this research it has been decided to use incremental learning algorithms as
error backpropagation (cf. s. 13.3.1). As we shall see the negative consequence of this will be
that the planners have to “think” about the same situations over and over in order for the
knowledge about what to do in different circumstances to be stored suitably.

4.5 Planning with Neural Networks

In this section, some neural planners that are representative of all existing neural network
planning controllers are reviewed. The objective is to highlight the principles that have been
used so far to this purpose. Neural planning controllers can be grouped under three categories.
The first category includes planning controllers based on dynamic programming and Dyna
architectures, reviewed in s. 13.2.9 and 3.3, so they are not considered in this section. The
second category includes planning controllers based on the principle of “activation diffusion”.

54

The third category includes planning controllers that use a gradient descent algorithm to
compute the proper sequence of actions or subgoals that make up the plan.

4.5.1 Activation Diffusion Planning

Activation diffusion planning (Lei, 1990; Hampson, 1998) is one of the most popular
techniques used to implement neural planning controllers. Methods based on it have often
been used to build and use neural “cognitive models” for spatial navigation (Mataric, 1991;
Levenick, 1991; Kortenkamp and Chown, 1992; Ravel et al., 1998; Trullier and Meyer, 1998)
but also to implement neural motion planning for plant and robot control (Fomin et al., 1996;
Zeller et al., 1997; Fleuret and Brunet, 2000). It is a planning method that can be “easily”
implemented with neural networks. The method has interesting relations with dynamic
programming and heuristic search, as we shall see in s. 5.2.

Figure 4.2: The architecture and environment of an agent capable of
planning. The bold arrows represent the main flows of information.

correspondences between points in the environment and internal

The best way to show how activation diffusion planning wor

task such as the one presented in Figure 4.2. This graph sh
controller's architecture implemented in neural terms. In particul
with obstacles where the agent has to solve a path-finding proble
of the environment, consisting of a two-dimensional array of ne
the agent, each of which is activated when a particular “fea
detected; a component of the architecture that here has been ca
controller is the internal model of the environment. When the ag
of the environment, one unit of the model corresponding to i
possible by the connection between the input units and the mo
store a “prototype” of the features of the percept generated

Goal

Start

Input pattern
(current position)

a

Environment

Next position
toward goal

Agent
Goal
ctivation
 Internal model of
the environment
executing activation diffusion
 The dotted arrows show the
 units representing them.

ks is to consider a navigation
ows both the task and the
ar the graph shows: an arena
m; the agent's internal model
ural units; the input units of
ture” of the environment is
lled “actor”. The core of the
ents is in particular position

t is activated. This is made
del units. These connections
by the environment in that

Actor

Action

55

position. For example the model of the environment and these connections could consist of a
Kohonen neural network (Kohonen, 1982). This network builds the prototypes by learning
and activates one unit of the model at a time through a “winner-takes-all” competition.

In an initial phase the agent wanders randomly in the environment and builds up some
links between the model's units by experiencing which transitions between these units
(positions in the environment) are possible and which are impossible. Successively, when the
controller is planning to go to a particular position in the environment, it activates the model's
unit that corresponds to it with activation r. At this point the activation diffuses from the goal
unit to the neighbouring units, decreasing in intensity when passing through the links. At each
time step the activation can diffuse from one unit to its neighbouring units one link distant,
and decrease when passing through each link. The activation level of each model's unit
becomes γt r, where t is the minimum number of links from that unit to the goal unit. When
the activation diffuses from the goal to the other units, if a unit receives activation from more
than one neighbouring unit, it assumes the maximum activation possible.

When the activation reaches the unit corresponding to the current position, the “plan” is
executed: at each time step the agent moves to the neighbouring state corresponding to the
model unit with the greatest activation. This can be implemented in several ways, for example
by using a look-ahead exploration of neighbouring units to find the one with the highest
activation and an “actor” as the one shown in Figure 4.2 (cf. the literature cited at the
beginning of this section). The “actor” is a servomechanism that takes the features of the
current position and the features of neighbouring position with the highest activation as input,
and returns the proper action. Notice that if this component is a neural network, it can be
trained in the initial phase together with the model of the environment.

Critical Observations. Activation diffusion planning has interesting relations with dynamic
programming and with heuristic search. We have seen that the units’ activation that it
generates is γt r. Notice that these values are also the optimal evaluations that are generated by
discounted dynamic programming after it converges when it is applied to a deterministic
environment (cf. s. 13.2.9). Notice also that when applied to deterministic environments,
dynamic programming, as activation diffusion, does not need to iterate, but it generates the
correct states' evaluations “one-shot” starting from the goal and moving away towards the
states more distant from the goal. In these respects there is a precise equivalence between the
two techniques.

Activation diffusion planning is very interesting for its simplicity and the speed with
which it generates plans. However it has a major drawback: each state needs to be represented
with a unit. If fact if each state were represented by many units through a distributed
representation (cf. s. 4.1) the activation diffusing to the units of one state would influence the
activation of other states that share the same units. This implies that the space complexity is
proportional to the number of states of the environment to be stored. This problem is less
impairing if, as in the example, neural networks are used to compress several states into few
“prototypes”. However this is still not satisfying. In fact the number of units needed still
grows proportionally to the number of states since one unit can still represent only one
prototype. The planners designed and implemented in the next chapters use distributed
representations for the states of the environment. When distributed representations are used,
patterns can be stored much more efficiently (cf. Rolls and Treves, 1998, p. 41). The
drawback of this approach is that a lot of iterations are needed to updated the evaluations for
each state, as the evaluations of different states depend on the same features, and hence tend
to have reciprocal influence (cf. s. 13.3.3).

Notwithstanding its drawbacks, activation diffusion planning is a very interesting
framework. For example the one-shot nature of the activation diffusion process that
formulates a plan, and the format of the model of the environment in terms of explicit links
between “contiguous” states (model's units) that can be visited by selecting suitable actions,
are very appealing properties. Interesting insights can be achieved by comparing activation
diffusion planning and dynamic programming, and by attempting to design planners that
incorporate features and strengths of both. Chapter 9 implements a planner that diffuses the
evaluations from the goal much like activation diffusion planning diffuses activation from the
goal.

4.5.2 Neural Planners Based on Gradient Descent Methods

This subsection briefly reviews some neural planners that use gradient descent methods for
finding the action plan or subgoals. The first neural planner (Tani, 1996) has been used to
control a robot that solves a navigation problem by planning. The robot moves at a constant
speed, and is endowed with an hardwired navigation system that allows it to move toward the
biggest open space between the obstacles. The robot has to plan a sequence of binary ({0, 1}
i.e. “left” or “right”) actions to reach the goal, where an action is the decision of which open
space to choose when a “branching point” is met. A branching point is a point where two
open spaces are visible. The system is based on a model of the environment implemented by a
feed-forward neural network trained with a back-propagation algorithm in a preliminary
learning phase. This network takes the current state and the programmed action as input, and
returns the predicted future state as output. The plan is built by a gradient descent method that
minimises a cost function with respect to the actions. To this purpose the binary actions at
each step of the plan are considered as the extremes of a [0, 1] segment. This cost function
depends on the mismatch between the predicted state and the goal state, the length of the path,
and the distance of the actions from their required {0, 1} values. A function based on chaos
theory is employed to overcome the problem of escaping the several local minima of the
rugged cost function.

sh
wh
wi
the
oc

 Evaluation of Subgoal t State t

Start
Subgoal
generator

Subgoal
t+1

Evalu
ator

cost for:
subgoal t to

Actor
Subgoal

t+1

Action t

Goal

56

Figure 4.3: The architecture of Schmidhuber and Wahnsiedler's planner.

The architecture of a second neural planner (Schmidhuber and Wahnsiedler, 1992) is

own in Figure 4.3. This system has been tested with a simulated path-finding problem
ere the cost of the path is differentiable with respect to the states, and each state is encoded
th (x, y) co-ordinates. In particular it is a navigation task where traversing some swamps in
 way to the goal has costs depending on the swamps' depth and the positions (x, y)

cupied by the agent.

subgoal t+1

The system is made up of three components: an actor that is capable of reaching a close
subgoal from a given state (it could be trained or hardwired feed-forward network); an
evaluator that is capable of estimating the cost of going from one state to another state in a
straight path (it could be a trained or a hardwired feed-forward network); and a subgoal
generator that is capable of generating the next subgoal (e.g. the next x, y to reach, on the
basis of a start state and the goal state). The subgoal generator is the focus of the work. It is
trained with a gradient descent algorithm so that it generates a sequence of subgoals such that
the sum of the costs of the whole path is minimised.

T

4.4. T
imme
This
on a r
hand,
differ
desce

Critic
the m
subgo
by few

M
iterati
betwe
In th
archit
are th
gives

t Network Network
s

model model

Network
model

 1 2

1

+

Actiont
hrun et al. (1
he planner is
diate reward
model is train
obot arm (sim
 and the act
entiable with
nt algorithm t

al Observat
odels of the
als. This lim
 continuous
oreover, the

ve process th
en the predic
ese regards,
ectures, whic
at in the syst
 the direction
Actiont+
Figure 4.4: Th

991) have proposed
 mainly composed
and next state on th
ed with the error b
ulated and real) tha
ions are all coded
 respect to them. T
hat maximises the r

ions. Though intere
world or the subgoa
its their applicabilit
variables.
 planners reviewed
at minimises a cos
ted state and the go
these systems are

h tries to find the a
ems reviewed here
 of change, while in
Actiont+
st+1
e archi

 a neu
of a m
e basi
ackpro
t has t
 with
he ac

eward

sting,
l gene
y to ta

 try t
t funct
al stat
 simi
ctions
actions
 dyna a
rt+2
rt+
t

r
o
s
p
o

t
.

s

o
i
e
l
t

st
57

ecture of Thrun's plann

al planner whose arch
del of the environme

 of the current state a
agation algorithm. T
 reach a rolling ball.
continuous variable
ions of the plan are

these systems are ba
rator are differentiab
ks where the states

 find the actions o
on. This cost functio
, or the cost of the p
ar to the solution
hat maximise the rew
are modified by a gr
rchitectures a random
rt+3
er.

itecture
nt capa
nd the p
he plan
The pos
s so tha
 comput

sed on t
le with r
and acti

r the su
n is base
ath, or t
strategy
ard. Th

adient d
 search
Reinforcement
energy

=
Difference

between max r
and predicted r
 is shown in Figure
ble of returning the
rogrammed action.
ner has been tested
ition of the ball and
t the rewards are
ed with a gradient

he assumption that
egard to actions or
ons are represented

bgoals through an
d on the mismatch

he reward received.
 adopted by dyna
e major differences
escent method, that
is used.

58

5 Unifying Concepts

This section unifies and generalises some concepts explored in the previous chapters. In
particular s. 5.1 investigates the relationship between learning, planning, prediction and
taskability, s. 5.2 investigates the relationship between some of the most important methods of
heuristic search, dynamic programming and activation diffusion planning, and finally s. 5.3
compares the concept of plan and policy.

5.1 Learning, Planning, Prediction and Taskability

This section generalises some concepts encountered in the previous chapters. In particular it
offers a formal presentation of “learning of behaviour” and “planning” for asynchronous
multi-goal tasks (cf. s. 3.1). This serves two purposes:
• To give a precise definition of the notions of “ learning of behaviour “ (s. 5.1.1) and

“taskable planning” (s. 5.1.2). The later is a form of planning more restricted than the one
defined in s. 1.1.

• To show (s. 5.1.4) that the original Dyna-PI architecture is a planner not taskable “in a
strong sense”.

The first point is important because the controllers designed and implemented in the following
chapters are capable both of planning and learning, so a clear definition of these concepts will
help to investigate their properties.

The second point is important because, even if the concept of taskability is clear and
“natural” within the problem solving and planning frameworks, it is much more subtle and
easily confusable within Markov decision processes and systems that are both capable of
learning and planning such as Dyna architectures. Within this literature (e.g. cf. Sutton and
Barto, 1998, pp. 56-57; Sutton, 1990) the use of the reward is said to be always more general
than the use of an “explicit” goal, i.e. a goal defined as a state to achieve. This section and
chapter 8 show that this is not the case.

The importance given to the problem of taskability by this research is justified by the
choice of reinforcement learning as a framework to implement planning with neural networks.

Before continuing, it is important to notice that the definition of goals through rewards
yields advantages in tasks with multiple synchronous goals. These are tasks where the
controller has to pursue several goals at the same time. In these cases the controller needs to
“weight” goals on the basis of their importance to decide how to distribute its efforts and time
between them. These problems are not dealt with within this research. For an extended
explanation of these problems and a review of some of the algorithms proposed to solve these
tasks see Tyrrell (1993), Humphrys (1996) and Hampson (1998).

In the following sections learning and planning algorithms are left unspecified to include
most of the algorithms considered in this thesis. Moreover, for simplicity:
• It is assumed that the environment is deterministic.
• It is assumed that the “goal” pursued is defined in terms of one particular state.
• It is assumed that the Markov property holds.

• In the case of planning, the analysis considers only the case of policies (and not the case
of plans, cf. s. 5.3).

• In the case of learning, the analysis considers only the simple case of reward 1 associated
with goal states, and reward 0 associated with all other states.

Figure 5.1: Two
m: mo

5.1.1 Learnin

“Learning of be
of the kind “stat
into finite period
• The current
• A signal m

pursue a par
or when som

• The reward
The controller is
• An adjustab

the kind
• Some other
The environmen
• Reward fun

otherwise.
• State transit
• The end of

goal state sm

b

a

m s

b

a

b

a

b'

a

s

p

s'

sg and s at each time step

b'

a

s

p

s'

b'

a

s

p

s'

(s, m, r) at each time step

Reward f
Transiti

Goal test: S × S → {0, 1}

Behaviour learning controller

Action a

Taskable planning controller

Action a

Transiti

m s m s
Environment:
unction: S × M → {0, 1}
ons function: S × A → S
59

 controllers capable of performing “learning
tivation. s: state. a: action. b, b': behavioural

g of Behaviour

haviour” is the process that allows the c
e, motivation → action” according to a “
s of time (trials). At each time step the in

 state of the environment s ∈ S.
∈ M, called “motivation”, on the basis o
ticular goal state sm ∈ S within a trial. A
e time elapses.
r ∈ {0, 1}.
 made up of the following components:
le set B, called “behaviour”, made up by
 b = (s, m, a) ∈ (S × M × A), with at mos
 data structures and algorithms used to m
t is made up of the following component
ction: S × M → {0, 1}. Given a particul

ion function: S × A → S.
the trials, the motivations and goals are
 are the same during one trial, and chang
Environment:
on function: S × A → S
of behaviour” and “taskable planning”.
rules. r: reward. p: prediction.

ontroller to find “good” associations
reward” signal r. The task is divided
put to the controller is as follows:

f which the controller has to learn to
 trial ends either when sm is achieved

 tuples, called “behavioural rules”, of
t one tuple for each (s, m).

odify the behaviour (see below).
s:
ar m, the reward is 1 if s = sm, and 0

exogenous. m and the corresponding
e at the end of trials.

60

The interaction with the environment is as follows:
• At each time step the environment sends (m, s, r) to the controller.
• At each time step the controller executes an action a in the environment.
The controller's task is to find a suitable behaviour in order to maximise a given function of
the rewards obtained over time (e.g. the sum of them, the discounted sum, etc.). To
accomplish this task the controller follows this procedure (learning of behaviour):
• At the beginning the controller creates the behaviour at random.
• At each time step the controller selects a behavioural rule (m, s, a) from the current

behaviour on the basis of the input (m, s), and executes the corresponding action a in the
environment.

• At each time step the controller evaluates the “quality” of the behaviour in terms of the
rewards r obtained and modifies its behavioural rules accordingly.

5.1.2 Taskable Planning

Planning is the process that allows a controller to find “good” associations of the kind “state
→ action” according to a “goal test” (see below) and eventually other tests (e.g. test about
costs). The task is divided in finite periods of time (trials). At each time step the input to the
controller is as follows:
• The current state of the environment s ∈ S.
• The goal state sg ∈ S that represents a state that the controller has to achieve before the

trial ends. A trial ends either when the controller achieves the goal, or when some time
elapses.

The controller is made up of the following components:
• A fixed set of “behavioural rules” b' = (s, a) ∈ B' = S × A.
• A fixed set of “predictions” p ∈ P, each associated to a particular b'. A prediction is a

fixed couple of the kind (b', s'), that says which is the state s' that is reached if the action a
of the rule b' is executed in the state s of the same rule. P is the controller's “model of the
environment”.

• A “behaviour” (or policy), i.e. an adjustable subset B'c ⊂ B' of behavioural rules (s, a),
with at most one rule for each possible s ∈ S.

• A goal test, i.e. a function of the kind S × S → {0, 1}. The goal test is applied to each
state s visited to check if it corresponds to the goal sg (the outcome of the test is positive
or negative respectively).

• (Eventually) other tests, based on the “costs”, “length”, etc., to manipulate the behaviour.
• Some other data structures and algorithms used to modify the behaviour.
The environment is made up of the following components:
• Transition function: S × A → S, where the current state and action generate the following

state.
• The goal is the same during a trial, and changes at the end of the trials. The goal is set

exogenously.
The interaction with the environment is as follows:
• At each time step of a trial the environment sends a goal state sg and a state s to the

controller.
• At each time step the controller executes an action a in the environment.
The controller's task is to reach the goal states sg in each trial. To accomplish this task the
controller follows this procedure (taskable planning):

61

• Lookahead. At each time step the controller searches for the behavioural rules making up
the behaviour B'c by using the model of the environment P ,the goal test, and the other
tests.

• Action execution. At each time step, on the basis of the state of the environment s, the
controller selects a behavioural rule from the behaviour B'c and executes the
corresponding action a in the environment.

Observations. According to the previous formalisation, “learning of behaviour” is a
procedure that changes the behaviour on the basis of the reward signal coming from the
environment, i.e. on the basis of experience in the world. Usually, as it is done in
reinforcement learning, this procedure works by trial-and-error, i.e. it “guesses” a behaviour,
tests it by the world and then tries to improve it on the basis of the consequences in terms of
reward. An important consequence of this is that learning of behaviour needs to experience
the goal many times in order to become capable of achieving it efficiently. On the contrary (in
principle) planning does not need experience in the world before acting appropriately. In fact
the core of planning is a search procedure carried out on the basis of the model of the
environment. This procedure tries to find a suitable linked combination of behavioural rules
that satisfies the test goal and eventually other tests. An important consequence of this is that
planning can potentially prepare a plan and then act and reach the goal efficiently in “one
shot”. The search procedure of planning can work in many ways. An example are the
searching and planning methods reviewed in chapter 2, based on systematic explorations of
the possible combinations of the behavioural rules. Another example could be a simulated
annealing procedure (Russell and Norvig, 1998, pp. 113-114) that searches in the space of the
behaviours and uses the goal test and the other tests to find a “good” one. Other examples are
the neural network planners inspired by the Dyna architectures presented in the following
chapters.

5.1.3 Taskability: Reactive and Planning Controllers

We are now in the position of clarifying in which sense reactive controllers and planning
controllers can be taskable (cf. also Sutton, 1991; Russell and Norvig, 1995, p. 790, on the
concept of taskability). In the case of the “behaviour learning controller” the signal of the
motivation plus the state of the environment are the input to the system. If the controller can
receive |M| different motivations, than a user can train the controller to achieve |M| different
goal states by associating a proper reward function to them. Notice that m can be a part of s,
for example it can be a particular vocal command pronounced by the user. This implies that
there are no practical limits for the number of possible motivations. Notice also that the
reward r itself can be a part of s, for example it can be a particular “rewarding” word
pronounced by the user in some circumstances. In the previous presentation m and r have
been distinguished from s for the particular role they assume in affecting learning and
behaviour.

After training is accomplished for some motivations and goals, the user can direct the
controller to pursue the various goal states by giving the corresponding motivation signal to it.
Notice that in this way the controller can be directed to achieve only the goals for which it has
been trained. If the user wants that the controller pursues a new different goal, it has to:
• Furnish a new motivational signal.
• Train the controller with a new reward function. In practical terms this means that the

user, or some other mechanism in the environment, has to be there while the controller
learns, and has to furnish a reward when the controller achieves the goal.

In these cases, where “a particular motivational signal and a particular reward function are
used for each goal”, we say that the controller is “taskable in a weak sense”.

The case of the “taskable planning controller” is different. If a user wants to assign any
new goal to the controller, it is only necessary to assign the desired goal sg to the controller.

This means that there is no need of a new reward function for each new goal. In fact the
test goal, internal to the controller, allows the controller itself to build and select the proper
plan or policy.

Figure 5.2: The different nature of the re
graphically represented with sets. Notice t

in a weak sense, does not require a rewar
signal sg that usually contains more in

taskability. Dyna-PI (the dot) is an instan

Notice that in the case of the “beh

have any nature: it is enough that it ca
greater than the number of different g
“taskable planning controller” the goal
to be a state s ∈ S. This usually mean
measured in terms of number of differe

In cases where “any goal sg ∈ S
reward function”, we say that the con
“taskable”. Figure 5.2 presents a graph

The controller proposed and imp
reactive controller at the same time. I
knowledge about how to reach it reacti
After achieving the same goal severa
available to pursue the same goal in a
signal of the goal assumes the role of “
retrieve the reactive skills suitable to pu

Detecting Taskability. It was impor
behaviour and taskable planning be
networks it is easy to confuse the two
multiple goals. Given the previous ana

Reactive controllers

Planning cont

Controller
in a stron

(taskable p

Controllers
taskable in a
weak sense

r

s

m

Environment
Dyna-PI
62

active and planning controllers with regard to taskability,
hat taskability in a strong sense, in comparison to taskability
d signal from the environment. However, it does require a
formation than the motivation signal required by weak
ce of planning controllers but it is not taskable in a strong

sense.

aviour learning controller”, the motivational signal can
n assume a number of different configurations equal or
oals relevant for the user. Instead, in the case of the
s signal that directs the behaviour of the controller has
s that it carries a greater amount of information, again
nt configurations that it can assume.
 can be assigned to the controller with no need for a
troller is taskable in strong sense, or simply that it is
ical summary of the possible cases.
lemented in chapter 8 is a planning controller and a
n fact when it plans to achieve a goal, it also stores
vely in permanent memory structures at the same time.
l times by planning, this knowledge becomes ready
reactive way. As we shall see, in this circumstance the
motivation”, in the sense that is used by the system to
rsue the goal.

tant to draw a clear distinction between learning of
cause when one implements planning with neural
, especially with learning neural systems that pursue

lysis, how is it possible to determine if a controller is a

rollers

s taskable
g sense
lanning)

r

s

sg (∈ S)

63

taskable planner? There are two tests that the controller should pass to be classified as
“taskable (in a strong sense)”:
• The controller receives the goal state “from outside”. Eventually the state transition

function part of the model of the environment is given to the controller. The controller
does not need any other information to achieve the goal. In particular it needs no
information about the reward function or the reward.

• When the goal is assigned to the controller for the first time, the controller is capable of
achieving the goal with an enhanced efficiency if compared to its reactive components (in
the case there are some) or better than the random solution (in the case there are no
reactive components). This criterion derives from the “one-shot nature” of planning.

Notice that here only planning controllers that work by “compiling” the outcome of planning
into the reactive components are considered (cf. Mitchell, 1990; Dyna-PI architectures are
compiling planners, cf. s. 3.3). In these systems the performance of the planning components
plus the reactive components is at least comparable with the performance of the reactive
components alone. These tests will be used to check if the controllers proposed and
implemented in the later chapters are taskable.

5.1.4 Taskability and Dyna-PI

Now it is possible to clarify why Dyna-PI is not a taskable planner. As mentioned
reinforcement learning algorithms need a different reward function, and a motivational signal,
for each goal pursued. Dyna-PI architectures are based on a model of the environment that
represent both the transition function and the reward function. The consequence of this is that
Dyna-PI architectures are not taskable in a strong sense. In fact if a new goal is assigned to the
controller, the controller does not have a model of the reward function for it. The only ways
the controller can pursue the new goal are: (a) the controller is trained with the new reward
function so that it can learn the part of the model of the environment related to it; (b) the part
of the model of the environment related to the new reward function and goal is directly
furnished to the controller. In both cases the controller does not satisfy the definition of
taskability in a strong sense given previously. The consequence of this is that the only thing
that an agent can do if it is assigned (or it selects) a goal is pursuing it on the basis of a
random walk (see Lin, 1992).

5.2 A Unified View of Heuristic Search, Dynamic Programming, and
Activation Diffusion

This section attempts to build a unified view of some important searching and planning
methods analysed in previous chapters. These methods are: LRTA* (cf. s. 13.1.2) and trial-
based real-time asynchronous dynamic programming with deterministic environment (cf. s.
13.2.11); Uniform cost search from the goal (cf. s. 13.1.1) and “cost” dynamic programming
with deterministic environment (cf. s. 13.2.9 and 13.2.11); Dyna architectures (cf. s. 3.3) and
“discounted” dynamic programming with stochastic environment (cf. s. 13.2.9); Activation
diffusion planning (cf. s. 4.5.1) and “discounted” dynamic programming with deterministic
environment (cf. again s. 4.5.1). The adjective “discounted” is used to refer to problems
defined through goal states with positive rewards and non-goal states with 0 rewards (cf. s.
13.2.1). The adjective “cost” is used to refer to problems defined on the basis of goal states
conceived as absorbing state and costs caused by the execution of actions (cf. s. 13.1.2 and s.
13.2.11).

64

All the methods just listed, abstracting from the details, are based on two steps:
• Building a gradient field of “evaluations” (or “heuristic”) over the states, increasing

(discounted methods) or decreasing (cost methods) toward the goal (in some cases an
initial approximate heuristic or set of evaluations are available to the system).

• Generating a plan (on-line or off-line) by “looking ahead” one step through a model of
the environment, and by selecting the “closest” state to the goal according to the gradient
field.

Figure 5.3: A unified view of the evaluations updating
methods reviewed in this chapter. X-axis: the states betw
the start and goal states are marked). Y-axis: the level of
heuristic of LRTA*. Bold curves: the optimal evaluation

are assumed to be proportional to the distance of the state
of the approximate evaluations. For simplicity these eva

ignore local noisy details (especially in the case of dyn
environment). Bold arrows: the expansion of the wave fr

the algorithm. Top part: methods that build the correct
approximations. Bottom part: methods that build the cor
methods based on goals as absorbing states and costs. R

associated to the goal and “discounted” evaluations. Com
values of the heuristic and to created values fl

It is interesting to notice that it is possible to

their relationship on the basis of: (a) the nature of th

LRTA*.
Trial-based real-time dynamic

programming.
Cost dynamic programming.

(Deterministic environment)

Goal Start

Uniform cost search from goal.

(Deterministic environment)

Goal Start

Admissible heuristic

“Cost” methods

“Discounted” methods
Dyna architectures.
Discounted dynamic

programming.

(Stochastic environment)

1

“Iterative
approxim.”

methods
Goal Start

Activation diffusion planning.
Discounted dynamic

programming.

(Deterministic environment)

1

“One-shot”

methods
 performed by some of the most important
een the start and the goal (for simplicity only
 the evaluations. Dotted line: the admissible
s (in the case of the cost methods, the costs

s from the goal). Thin lines: the “wave-front”
luations are represented by regular lines that
a architectures that deal with a stochastic
ont of the evaluations under the updating of

 evaluation function (heuristic) by iterative
rect evaluation function one-shot. Left part:
ight part: methods based on positive reward
ments: LRTA* tends to “fill in holes” of low
at or descending toward the goal.

classify the listed methods and highlight
e evaluations employed; (b) the way they

Goal Start

65

update the evaluations. Figure 5.3 proposes a unified graphic summary of the four possible
combinations of these two dimensions. For graphical reasons, this figure shows a one-
dimensional space of states and represents graphically how the listed methods behave along
the two dimensions.
On the basis of the evaluations' nature, we can distinguish between:
• Left part of Figure 5.3: cost methods where the gradient field decreases linearly for states

progressively closer to the goal (LRTA*, cost trial-based real-time dynamic programming
with deterministic environment, cost dynamic programming with deterministic
environment, and uniform cost search from goal).

• Right part of Figure 5.3: discounted methods where the gradient field decreases
exponentially for states progressively more distant from the goal (Dyna architectures,
discounted dynamic programming with stochastic and deterministic environment, and
activation diffusion planning).

On the basis of the way the methods update the evaluations we can distinguish between:
• Top part of Figure 5.3: methods that build the correct evaluation function, or heuristic, by

iterative approximations (LRTA*, trial-based real-time dynamic programming, cost
dynamic programming with deterministic environment, Dyna architectures, and
discounted dynamic programming with stochastic environments).

• Bottom part of Figure 5.3: methods that build the correct evaluation function one-shot
(uniform cost search from goal, activation diffusion planning, and discounted dynamic
programming with stochastic environments).

Notice that only Dyna architectures and dynamic programming are capable of dealing with
stochastic environments (top right part of Figure 5.3) while all other methods assume a
deterministic environment.

Summarising, in cases of absence of initial heuristic and repeated trials, the majority of
methods considered in the previous chapters are based on the strategy of building a gradient
field of evaluations and, in different measure, they are related to some form of dynamic
programming. This means that the principles of evaluations and lookahead search on the
basis of these evaluations are very general and powerful. This circumstance is very important
for neural network planning. In fact it is relatively easy to conceive of ways to implement
neural networks that learn to produce an evaluation gradient field over the states. The
following chapters will show some ways to do this.

5.3 Policies and Plans

It is important to draw some conclusions on the differences between plans and policies.

Plans. In its pure form a plan is a sequence of actions of the kind “a1, a2, a3,…” to be executed
one after the other (cf. left of Figure 5.4). What is important is that there is an ordering
between the actions: the execution of one action is conditional to the execution of the previous
action in the plan, and is triggered by it. Notice that the plan execution is “blind” i.e. there is
no monitoring of the actions' outcome.
Policies. In its pure form a policy is a set of associations of state-action pairs of the kind “(s1,
a1), (s2, a2), (s3, a3),…” for all the states of the state space (cf. right of Figure 5.4). A policy is
executed as follows. At each time step the current state is detected, the list is scanned with the
state being used as retrieval-key, and the action of the pair with the state corresponding to the
current state is executed. Notice that there is no ordering between the actions i.e. the current
state is sufficient to decide which action to trigger (this requires that the Markov property
holds for the policy to be successful, cf. s. 13.2.2).

Plans vs. Policies. The advantages of plans vs. policies are as follows:
• Plans take less time to be prepared and less space to be stored in comparison to

(complete) policies that require a huge amount of both. In fact plans focus on relatively
few states and actions.

• The information contained in the ordering of the action furnishes some kind of memory
that can be useful with partially observable Markov decision problems (Wiering and
Schmidhuber, 1998; cf. s. 13.2.2).

The advantages of policies vs. plans are:
• They are capable of coping with stochastic outcomes of action execution and non-perfect

models of the environment because the execution of each action is based on the current
state, and because the policy specifies what to do for each possible state visited. Plans
have more problems in dealing with these situations because they are committed to a
particular ordering of actions, and do not “know” what to do in case of unexpected
outcomes of actions' execution.

Figure 5
text for

Conditi
planners
they bu
executio
some as
of Figur
side we
practice,
(cf. s. 1

…

Conditional plan:
 a1, a2, (s3, a3), a4, (s5, a5), a6, a7,…

(s'3, a'3) (s'5, a'5)

Partial policy (for few s ∈S):
(s1, a1),
(s2, a2),
(s3, a3),

Policy (for all s ∈S):
(s1, a1),
(s2, a2),
(s3, a3),
(s4, a4),

…
Goal

Start
 Plan:
 a1, a2, a3,
66

.4: Example of plan (left), conditional plan and partial policy (centre), and policy (right). Cf.
details. The dotted curves are drawn around the area of the state space on which the different

methods are competent.

onal Planning and Partial Policies. We have seen (cf. s. 2.3 and 2.4) that many
 that have been implemented are different from the pure plan just illustrated. In fact
ild plans that are partially ordered or use monitoring of the outcome of action
n. In the case of “conditional planning” they use “perceptive actions” that returns
pects of the current state that condition the plan's execution. As mentioned (cf. centre
e 5.4 and s. 2.4.1) conditional plans are close to the concept of policy. On the other
have seen that the idea of an satisfactory policy defined for each state is not viable in
 so that the policies used in practice tend to focus on limited regions of the state space
3.2.9, 13.2.10, 13.2.11). A partial policy is a policy that is satisfactory and well

…

67

defined only for few states among all possible ones. For all other states the policy uses some
default criteria to select the actions (centre of Figure 5.4).

On the basis of these considerations it can be concluded that the best strategies are
probably to be found between the two extreme strategies of pure plans and pure policies. In
particular this is what a good planner should do (cf. also s. 2.4.4):
• Use partial policies (or conditional plans, cf. centre of Figure 5.4). This means that when

planning the controller should prepare to act in some states that deviate from the states
that the controller expects to visit with high probability.

• The possible extra states to consider in the partial policy should be only the ones that
have a probability of being visited over a certain threshold, given the noise caused by the
(eventually) stochastic policy and the stochastic outcome of actions.

• Replan (cf. s. 2.4.2) when some states different from the ones considered in the partial
policy, are encountered during the actions' execution.

• Monitor the states visited during actions' execution to guide the selection of the partial
policy's actions and the decision of replanning.

68

PART 2

DESIGNING AND TESTING NEURAL PLANNERS

This second part of the thesis presents the empirical investigations of the research. Each
chapter is organised around some problems and has a fixed structure. Each chapter starts with
an introduction that presents the set of problems which the chapter deals with, gives an
overview of the neural controller used in the experiments, and highlights the novel traits of
this controller by comparing it with other controllers existing in the literature. Then the
chapter presents the details of the neural controllers and the simulation scenario with which
the problems illustrated in the introduction are investigated. Next, the chapter presents the
results of the simulations run with these controllers and their possible interpretations. Finally
it presents the drawbacks of the controllers and draws the conclusions.

The neural controller presented in each chapter is usually created by adding some extra
components to the controller presented in the preceding chapters, so that the complexity of the
controllers presented increases across the chapters.

During the research, in order to guarantee the possibility of comparing the results of
different simulations, an attempt has been made to keep the conditions under which they have
been run consistent, to use the same measures of performance and behaviour, and to present
the data in the same format. However, this has not always been possible, since experiments
have been run over a long period of time during which new ideas, problems and developments
have arisen. As a consequence, the results across the chapters are sometimes not fully
comparable in quantitative detail, and are sometimes presented with slightly different formats
(scale of graphs, details of moving averages, etc.). The results within each chapter have been
produced with the same conditions and presented in similar ways so that they should be fully
comparable.

69

6 Neural Actor-Critic Reinforcement Learning

6.1 Introduction: Basic Neural Actor-Critic Controller and Simulations'
Scenarios

Problems Tackled. This chapter presents a neural implementation of the actor-critic
controller. This controller is at the basis of the reactive and planning controllers presented and
investigated in the following chapters. It also presents the simulated landmark-navigation
scenarios used to test these controllers. Two kind of landmark navigation scenarios will be
presented that have different levels of complexity. One scenario has landmarks only outside
the arena where the simulated robot moves, and another scenario has landmarks inside the
arena. In the later case the landmarks also have the role of obstacles. The components of the
basic neural actor-critic controller are tested with these scenarios to collect data to be used to
interpret the more sophisticated controllers presented in the following chapters.

The chapter also investigates how the generalisation and noise tolerance properties of the
neural controller presented accelerate learning, but also how they exacerbate the “aliasing
problem” (cf. s. 13.2.2). Some simulations show the effects of the variation of some
parameters of the model and some parameters that control noise, and furnish a justification for
the choice of some aspects of the controller's architecture.

A last problem that the chapter tackles is the capacity of discounted reinforcement
learning to deal with long periods of time. In particular some simulations show that it has
problems to update the evaluations and the actions' probabilities for states far from the goal.
This problem is crucial if reinforcement learning methods are used to implement planning, as
planning is most useful when it is applied to long periods of time, as happens with abstract
planning (cf. s. 11.4.4).

Overview of the Controller. The general functioning of the controller can be described as
follows. The actor, a feed-forward neural network, yields a stochastic action-selection policy,
and the evaluator, a second feed-forward neural network at the core of the critic, evaluates the
states of the environment in terms of expected future rewards achievable with the current
actor's policy. The evaluator improves the quality of the evaluations, by experiencing the
rewards, through a supervised learning algorithm, while the actor improves the action-
selection policy, by increasing the probabilities of actions that bring the controller to ascend
the gradient field of evaluations, through a trial-and-error process.

What is New and Related Work. The actor-critic controller implemented in this chapter
differs in some aspects from the actor-critic models proposed in Sutton and Barto (1998, p.
151). For a neural implementation of this model see Lin (1992). See Sutton and Barto (1998,
pp. 197-200) for the general principles of implementing reinforcement learning controllers
through “gradient descend methods” such as the Widrow-Off rule (Widrow and Hoff, 1960).
The major differences between the controller presented here and the controllers presented by
these authors are the following ones:

70

• Actions' probability distribution of the “actor”. The actor presented here uses a function
used to build the actions' probabilities that is simpler than the popular soft-max function
shown in Eq. 13.19. Though popular, the soft-max function yields a distribution that has
not been demonstrated to be better than other distributions. For example Thrun (1992)
shows some cases where it is actually worse than the ε-greedy policy (for which cf. s.
13.2.5). Some simulations with the scenarios presented later have shown that the soft-max
function leads the actor to converge too fast, and this worsens the negative effects of the
aliasing problem (cf. s. 6.4.3). For these reasons a function that is simpler than the soft-
max function and converges more slowly has been used to build the probability
distribution of actions (cf. Eq. 6.1).

• The “matcher”. As we shall see the controller presented here uses a hand designed neural
network called “matcher” to internally produce the reward signal (cf. s. 6.3). After the
simulated robot is assigned a particular goal (the state that the simulated robot has to
pursue) the matcher returns a reward 1 if the goal has a similarity with the current input
pattern above a certain threshold, otherwise it returns a reward 0. This is different from
what happens within the standard reinforcement learning controllers, where the reward is
thought of as being given from outside the controller when the controller reaches the
desired state (cf. Sutton and Barto, 1998, pp. 56-57). This difference is of little
importance in the context of simple reinforcement learning controllers, but it is quite
important in the context of planning because it allows the controller to be taskable in a
strong sense (cf. s. 5.1 and chapter 8).

See also Nehmzow et al. (1989) for an interesting actor-critic architecture that uses “instincts”
(hardwired behaviours and task-related criteria for the critic) to enhance the performance and
learning of a robot.

The problem presented in s. 6.5, related to the effects of the errors caused by function
approximation when discounted reinforcement learning is used, has already been investigated
by McDonald and Hingston (1994). This work has been pointed out during the PhD’s viva, so
the problem has actually been “rediscovered” during the PhD research. McDonald and
Hingston present a theoretical analysis of the problem, and some empirical results to identify
the problem domains that are more sensitive to it. Here, s. 6.5 presents an empirical
investigation of the particular effects that the problem causes on the state values computed to
solve a landmark navigation task.

Chapter's Outline. S. 6.2 presents the scenarios and the simulated robot used in the
simulations throughout the research. S 6.3 presents the architecture of the neural actor-critic
controller used in this chapter. S. 6.4.1 presents the functioning of the matcher, while s. 6.4.2
presents the functioning of the evaluator and actor. S. 6.4.3 illustrates the effects of the
aliasing problem, while s. 0 presents the effects of the variation of some important parameters
of the controller and the scenarios. S. 6.4.5 justifies the particular choice of the pre-processing
component of the model. S. 6.5 presents some simulations that suggest that discounted
reinforcement learning have some limitations in dealing with long periods of time. Finally s.
6.6 draws the conclusions of the chapter.

6.2 Scenarios of Simulations and the Simulated Robot

The simulations considered in this thesis mainly use two scenarios. The first scenario is
shown in Figure 6.1. It is a square arena with sides measuring 1 unit, outside of which there
are 4 circular landmarks of different sizes. The second scenario used in the simulations is
shown in Figure 6.2. It is again a square arena with sides measuring 1 unit, but this time it has

5 circular landmarks inside. These landmarks are also obstacles for the simulated robot. Other
scenarios used in the simulations will be described later.

NE
 SW NW NE SE

NW

SE
SW

71

Figure 6.1: Left: one of the scenarios used in the simulations. It contains three possible goals (stars),
four landmarks (black circles), the scope of the simulated robot's 50 visual sensors (delimited by the
rays), and the simulated robot (white circle at origin of rays). The position occupied by the simulated
robot is considered as “start position” in some simulations. Right, from top to bottom: the pattern of
the visual sensors’ activation, its re-mapping into contrasts, the three goal positions north-east, north,

centre (as contrasts relative to the images viewed from the goal positions). The letters near the
landmarks help to identify their respective positions on the “image” of the retina’s activation shown on

the right.

The simulated robot can see the landmarks with a one-dimension horizontal retina

covering 360 degrees (throughout the thesis, the graphs about the retina show the activation of
the sensors clockwise starting from those oriented toward the south). Notice that the simulated
robot cannot see a landmark that is behind another landmark, and perceives just a “big”
landmark if there are two or more landmarks that are contiguous in sight. The retina is made
up by 50 units (vector x). Each unit xi activates with 1 if a landmark is in its scope, with 0
otherwise. This activation is affected by noise (0.01 probability of flipping for each sensor) in
the majority of the simulations of this research. It will be explicitly indicated when the entity
of this or other sources of simulated noise are different from the ones indicated in this section
(cf. s. 6.4.3 for an analysis of some effects of the variation of this and other sources of noise).
The signals coming from the retina are always aligned with the magnetic north through a
“compass”. The reading of the compass is affected by Gaussian noise (0 mean, 1 degree
variance) in the majority of the simulations of the research.

Before being sent to the controller, these signals are re-mapped into a vector y of 100
binary units representing the image “contrasts” (contrasts between the landmarks, perceived
as “black”, and the “background”, perceived as “white”). Two contiguous retinal units give
unit activation to one contrast unit yj if they are respectively on and off, to another contrast
unit if they are respectively off and on, and to no contrast units if they are both on or both off.
This simple re-mapping performs edge detection and implements an expansion of the input
space that allows the controller to work properly by using simple two-layer networks for the
controller, in the scenarios considered here (cf. s. 6.4.5 for the justification of this choice).
Notice that the simulated robot has a limited perception of the environment's current state (cf.
s. 13.2.2 on partially observable Markov decision problems, and Wyatt et al., 1998, for the
importance of the “Markov assumption” for mobile robots).

At each cycle of the simulation the controller has to select one of eight actions, each
consisting of a 0.05 step in one of eight directions aligned with magnetic north (north,
northeast, etc.). The outcome of these actions is affected by Gaussian noise. In the majority of
the simulations of this research this noise has a 0 mean and 0.01 variance. If the simulated
robot moves against the arena's boundaries or the obstacles it “bounces back”, i.e. it is set at
the old position.

Figure 6.2: Left: a
landmarks (black circl

and the simulated robo
considered as “start po

corresponding contrast
northeast, and southw

positio

6.3 Architecture

This section illustrate
controller are shown

Now the single
robot learning by rei
environment and yie
world are achieved th
the autonomous robo
train the actor and c
capable of generating
simulated robot con
generates a reward si
by the predictor (the
with the reactive and
same matcher for bo
Baldassarre and Paris

Now the details
in Figure 6.4. The ma
first part of its input
goal position) is very

 S+SW C+NW NE

S

SW
NW
C

 second
es), the
t (white
sition”

s, and th
est resp
ns on th

s and

s the d
in Figu
compo

nforcem
ld a “r
at are r
t is pla
ritic. H
 these
sidered
gnal by
 details
 the p
th cas
i (2000
of the m
tcher i

 (100 u
 simila
NE
72

 scenario used in the simulations. It contains three goals (stars), five
scope of the simulated robot's 50 visual sensors (delimited by the rays),
 circle at origin of rays). The position occupied by the simulated robot is
in some simulations. Top right, in the order: the sensors' activation, the
e contrast patterns corresponding to the three goal positions, northwest,

ectively. The letters near the landmarks help to identify their respective
e “image” of the retina’s activation shown on the right.

 Algorithms

etails of the neural actor-critic controller. The components of this
re 6.3.
nents are analysed, starting from the matcher. An autonomous
ent learning is endowed with structures that take input from the

eward” or “punishment” internal signal when some states of the
elevant for the robot itself (e.g. some important resources). When
nning, it still needs to generate reward and punishment signals to
owever, unlike a reactive robot, the planning robot has to be

signals in correspondence to any goal that is assigned to it. In the
 here, this is done by the “matcher”, a neural network that
 comparing the goal with the “simulated input patterns” generated
 of this will be clarified in chapter 8). To make the simulations
lanning simulated robots comparable, this research has used the
es (i.e. for all the experiments reported in the thesis). See also
) on these issues.
atcher are explained. The architecture of the matcher is showed

s a hand-designed neural network that yields 1 as output when the
nits encoding the goal, i.e. the image of the landmarks from the
r to the second part (100 units corresponding to the current input

73

or mental image). Otherwise it yields 0. The matcher is composed of 100 sub-networks each
taking as input the two bits with same position of the two input parts, and implementing an “if
and only if” logic function (00 1, 01 0 10 0 11 1). The output of these sub-networks is
then summed, normalised to 1 (dividing it by 100), and compared with a threshold
(“recognition threshold”) to produce the matcher output (0 or 1). The threshold is usually set
at 0.94 throughout the research. This implies that the matcher recognises an input as the goal
if they share at least 94% of “bits”.

Figure 6.3: Components of the basic neural actor-critic controller. Arrows indicate that a pattern is
“copied” from one unit/layer to another unit/layer. Dotted arrows indicate the learning signal. For each
layer, only few units have been drawn. The missing units are marked by three aligned black dots. The
total number of units of each layer is indicated in round brackets. The horizontal connection within the

TD-critic copies the unit's signal with a one step delay (see text). The details of the matcher are
expanded in Figure 6.4.

The actor is a two-layer feed-forward neural network that receives the contrast pattern as
input and has eight sigmoidal output units that locally encode the actions (cf. Baldassarre and
Parisi, 2000, for an actor with a distributed representation of actions). To select an action, the
activation mq (interpretable as “action merit”) of the output units is sent to a stochastic
selector that implements a stochastic “winner-take-all competition”. The probability Pr[.] that
a given action aq becomes the winning action awin (to execute) is:

 P[aq = awin] = mq / Σf[mf] Eq. 6.1

The evaluator is a two-layer feed-forward neural network that receives the contrasts as

input and with its linear output unit yields the estimate V'π[yt] of the evaluation Vπ[yt] of the
contrast pattern yt. Vπ[yt] is defined as the expected discounted sum of all future
reinforcements r, given the current actor's action-selection policy π (cf. Eq. 13.9):

Feature extractor

Actor

Goal (100)

TD-critic

Evaluator

Visual sensors (50)

Contrast units (100)

Learning
signal

Effectors

Stochastic
selector

Matcher

Action
units
(8)

 Vπ[st] = E[r t+1 +γ r t+2 +γ2 r t+3 + …] 0 < γ < 1 Eq. 6.2

where γ is the discount factor (set to 0.95 in the simulations of this chapter), and E[.] is the
mean operator.

The TD-Critic is an implementation in neural terms of the computation of the Temporal-
Difference error e defined as (cf. Eq. 13.15):

 et = (rt+1 +γ V'π[yt+1]) - V'π[yt] Eq. 6.3

Figure 6.4: Deta
parts, one for the g

Each couple
implementing an “
graph. The output o
a step function (sho
lines) whose value

The evaluato
s.13.3.1) that uses
follows:

where η is a learn
of the contrast un
target value (rt+1+
because it is expr
V'π[yt+1] (cf. Barto

The actor is a
Recall that this si

1

Goal

Vi
pa

If and only
if function
0.5

-0.5
ils of the architectu
oal pattern and one
of bits of the two p
if and only if” func
f these networks is
wn for the output u
 is indicated in the

r is trained with
 the error signal c

ing rate (set to 0.
it j at time t. This
 γ V'π[yt+1]). Th
essed at time t+
, 1994).
lso trained with

gnal measures the

5

sual
ttern
-0.94
-0.1
1
-1
-1

-1

-1
0.01

0.0
re of t
 for th
attern
tion (d
 summ
nit of

 graph
sho

 a W
omin

∆

1 in t
 impl
is tar
1 on

a Wid
 acto
0.01
74

he matcher. The
e pattern corresp
s with the same p
ashed line). Onl
ed and compare

 the whole match
. The hardwired
wn in the graph

idrow-Hoff alg
g from the TD

wj = η et yj

he simulations
ies that the eva
get is a more
the basis of th

row-Hoff algo
r's capacity to
0.011
0.0
 input of the matcher is made up of two
onding to the current input (dotted lines).
osition are compared by a network
y five of these networks are shown in the
d with a threshold. Each unit implements
er). Each unit has a bias (little horizontal

weights of the first of these networks are
.

orithm (Widrow and Hoff, 1960; cf.
-Critic. The weights wj are updated as

Eq. 6.4

of this chapter) and yj is the activation
luator's estimate is made closer to the
precise evaluation of yt than V'π[yt]
e observed rt+1 and the new estimate

rithm according to the error signal et.
select actions that bring the simulated

75

robot to new states with an evaluation higher than the average evaluation experienced
previously by moving from that same state. The change of the merits is achieved by updating
the weights of the neural unit corresponding to awin, and only this, as follows:

 ∆wwin j = ζ et (4 mwin (1 - mwin)) yj Eq. 6.5

where ζ is a learning rate (set to 0.1 in the simulations of this chapter) and (4 mwin (1 - mwin))
is the derivative of the (sigmoidal) transfer function multiplied by 4 to homogenise the size of
the learning rates of the actor and the (linear) evaluator (in fact the maximum of that
derivative of the transfer function is 0.25 for the actor, and 1 for the evaluator).

Figure 6.5: Case of the scenario with 4 landmarks outside the arena. The graphs show the activation of
the matcher for the three goals (first, second and third columns of graphs), without (top row) and with
(bottom row) noise of the sensors and the compass. Each single graph shows the output of the matcher
in 30×30 different positions of the simulated robot on the arena (grid). White cells mark positions that
the matcher recognises as goal (here the mather's output is 1). Black cells mark positions similar to the

goal where the activation potential of the matcher's output unit (before being compared with the
threshold) is over 0.84. Grey cells mark positions where such activation is below 0.84.

Particular attention has to be paid to the training of the evaluator when the tests are

broken into “trials”, for example when the simulated robot is set at a new position chosen
randomly after it reaches the goal. In this case problems may arise. This is true in general, but
using generalisation methods as neural networks exacerbates the problems. In particular Eq.
6.3, Eq. 6.4, and Eq. 6.5 need to be modified in two ways at the end and beginning of each
trial:
• When the reward is 1 at the end of a trial (the goal has been reached) V'π[yt+1] needs to be

set at 0. In fact the evaluator will tend to return a V'π[yt+1] > 0 because yt+1 tends to be
similar to yt. This causes the target (rt+1+ γ V'π[yt+1]) used to adjust V'π[yt] when the goal
is reached at t+1, to grow above 1. In turn V'π[yt+1] grows even more following V'π[yt]
(again because yt+1 is similar to yt) generating a dangerous positive feedback that in some

76

conditions leads the evaluations to grow indefinitely. Setting V'π[yt+1] to 0 produces a
stable gradient field with evaluations equal to 1 for the states around the goal, and
evaluations that decrease smoothly for states progressively more distant from the goal.

• When a new trial starts, i.e. when the simulated robot passes from the last state of the
previous trial to the first state of the new trial, both the learning coefficients of the actor
and the evaluator have to be set at 0. This has to be done because there is not an “old
evaluation” to be updated on the basis of the current evaluation, and because there is not
an “old state” with regard to which the action's probabilities need to be updated.

At the beginning of the simulations, the weights of the evaluator and actor are randomised
within the interval [-0.001, +0.001], so the evaluations expressed by the evaluator's linear
output unit are around 0, and the merits (and probabilities) expressed by the actor (and
stochastic selector) are around 0.5 (and 0.125). This implies that initially the simulated robot
explores the environment randomly, and then it starts to shape the evaluations on the basis of
the rewards and the probabilities on the basis of the evaluations.

6.4 Results and Interpretations

6.4.1 Functioning of the Matcher

This section illustrates the functioning of the matcher with and without the noise affecting the
sensors and the compass. Figure 6.5 shows the output of the matcher in different conditions
for the three goals illustrated in Figure 6.1. Figure 6.6 shows the output of the matcher in
different conditions for the three goals illustrated in Figure 6.2. Three relevant facts become
apparent from these graphs.

Figure 6.6: Case of the scenario with 5 landmarks inside the arena. The graphs show the activation of
the matcher for the three goals (three columns) without and with noise (two rows). The interpretation

of the graphs is as in Figure 6.5.

77

The first is that the Matcher is capable of distinguishing between input patterns very
similar to the goal and input patterns different from it. The recognition threshold of the
matcher can be regulated so that the sensitivity of the matcher is the desired one.

The second relevant fact is that the matcher shows an acceptable robustness for the noise
affecting the input and the compass. Unluckily, the simulations have also shown that the noise
affecting the pattern of the goal is quite disruptive, especially for planning (cf. later chapters).
This problem has been successfully solved throughout the research by taking an “average
input pattern” as goal, so to eliminate noise. In particular to build this average pattern, the
simulated robot has been set at the goal position, 30 noisy input patterns have been recorded,
and then averaged bit by bit. Then to build the pattern used as goal the average for each bit
has been compared with 0.5. Each bit of the goal pattern has been set at 1 or 0 if this average
was respectively above or below 0.5.

The third interesting fact is that the graphs give a good idea of the potential generalisation
properties of the neural controller based on the use of the (contrast) features. The case of the
scenario with 4 landmarks outside the arena (Figure 6.5) clearly shows that the controller can
strongly generalises along the lines that take from one particular position to the landmarks.
For example (cf. graphs) several positions between the goal and a particular landmark are
considered similar to the goal position by the controller because from them the same
landmark is visible in the same direction. Figure 6.6 shows that with the more complex
scenario (landmarks inside the arena), the possible generalisation is more fragmented. As we
shall see below, in this case generalisation still produces positive effects in terms of learning
speed (cf. s. 6.4.2) but it also causes some confusion between different but similar states (cf. s.
6.4.3).

The illustration of a drawback of the matcher concludes this section. The drawback is the
need to regulate the parameter of the recognition sensitivity. At least with the simple
simulated robot's sensory apparatus adopted here, this parameter has proved to be very
sensitive. In some cases of the simulations illustrated in this thesis it has been necessary to set
it at a value different from the one generally used (0.94) because otherwise the area of
recognition was too wide or too small. For example this has been the case of the northeast
goal shown in Figure 6.2, for which the value of the parameter has been set at 0.96.

6.4.2 Performance of the Controller: The Critic and the Actor

Now the attention is directed to analysing both the behaviour of the evaluator, the major
component of the critic, and the performance of the actor. Two types of simulations have been
run to this purpose. In the first type of simulation, divided into trials, the simulated robot had
to reach one goal position. When this happened, the simulated robot was set at another
position chosen randomly, and another trial started. This was repeated several times. The
second type of simulation was similar to the previous one, with the difference that the
simulated robot was always set at the same start position at the end of each trial. Both
simulations have been run with three different goals and by using the two scenarios illustrated
in Figure 6.1 and Figure 6.2. The two Figures the scenarios also show the position of the start
position and the three goals.

The first data collected are relative to the functioning of the evaluator in the case of
random restart. Figure 6.7 shows the gradient field of the evaluations for the three goals in the
case of the simple scenario after the goal has been reached the first time, after 300 steps from
this event, and when the performance has reached a steady state (see below).

Some facts become apparent from these graphs. The most important is that the
generalisation capacity of the controller implies that reaching of the goal once is sufficient to

78

update the evaluations of several states, not only the one directly preceding the goal state (cf.
top row of graphs). This confirms what anticipated through the analysis of Figure 6.5. This
generalisation capacity of the controller is very important because it speeds-up learning (The
importance of generalisation for speeding up learning processes is considered very important
in the literature, cf. s. 13.2.8).

Figure 6.7: The graphs shows the gradient field of evaluations V'π[yt] for the three goals (three
columns) of the four landmarks scenario. For each graph, the cell with a bold border indicates the

position of the goal pursued. The first row of graphs indicates the gradient field right after the goal has
been reached for the first time. The second row of graphs indicates the gradient field 300 steps after
this event. The third row of graphs indicates the gradient field at the end of training. To build each

graph the simulated robot has been set at 20×20 different positions on a grid overlapped to the arena,
and the evaluation yielded by the evaluator has been measured. The size of the white (or black)

squares is proportional to the positive (negative) evaluation given in that position. The big white cells
scattered irregularly in the graphs are caused by temporary noise of the sensors. In the first and second

row of graphs the gradient field is not precisely centred on the goal because the simulated robot has
built it on the basis of the state from which the goal state has been encountered, and because the area

recognised as goal is often bigger than a single cell (cf. Figure 6.5).

The generalisation property of the controller has also some costs. One is that some of the

evaluations assigned to some states through generalisation may be wrong. This can be seen by
considering the middle row of graphs of Figure 6.7. These graphs show the gradient field of
the evaluations 300 steps after the goal has been reached. Some negative evaluations can be

79

seen (black cells), while the evaluations over the entire arena should be positive, since only
positive rewards are involved in the task. This is caused by the fact that some of the
evaluations assigned to some states through generalisation after the goal has been reached, are
too high. As the simulated robot visits these states and directly (i.e. not on the basis of
generalisation) updates their evaluations, these evaluations are lowered (this can be clearly
observed while the simulations are running). Generalisation implies that the evaluations of
other similar states are lowered too. If these evaluations were near 0, as they are for some
states (see first row of graphs), the net effect is that they are pushed towards negative values.
Summarising, the negative evaluations visible in the graphs reveal evaluation errors caused by
the generalisation property of the controller. Luckily, the controller is capable to correct these
errors as the training goes on, as shown by the bottom row of graphs of Figure 6.7.

Figure 6.8: Learning curves for the first scenario with four landmarks outside the arena. Y-axes:
number of steps per goal reached, averaged over the last 100 successes (a simple average is considered

before 100 successes are accumulated), and averaged over 10 simulations run with different random
seeds. X-axis: steps. Left: performance of the simulations run by setting the simulated robot at a

randomly chosen start or to the same start at the end of each trial. Right: graph that shows the standard
deviation of the simulations run by setting the simulated robot at a random start.

Figure 6.8 shows the learning curves for the two types of simulations described

previously (random and fixed restart) for the first goal. The graph shows the performance of
the simulated robot measured in terms of steps taken to reach the goal. For each run this
measure is averaged over the last 100 goals reached (at the beginning, with less than 100
goals reached, a simple average has been used) and then averaged over 10 simulations run
with different random seeds. From the graph it is apparent that the performance of the
simulated robot improves from about 2000 steps per success, to about 25 steps per success.
Since the robot’s step is 0.05 long and the arena is 1 by 1, the optimal path to the goal is on
the average about 10-15 steps long, both for the random and the fixed restart conditions (but
consider that action noise and obstacles make the task more difficult). The right end of the
figure gives an idea of the variance of this kind of simulations when they are run with
different random seeds. This is useful to interpret the results of the following chapters when
different controllers are compared.

Figure 6.9 shows the behaviour of the evaluator in the case of the second more complex
scenario with landmarks inside the arena. It can be seen that also in this case the
generalisation property of the controller allows the system to attribute an evaluation different
from 0 to many states after the goal has been reached one time only (top row of graphs). This
evaluations make up a gradient field that has a certain tendency to decrease for states
progressively more distant from the goal, but it is also much more irregular than the case with

0

500

1000

1500

2000

2500

0 5000 10000 15000 20000 25000 30000

random start

fixed start

-500

0

500

1000

1500

2000

2500

3000

3500

4000

0 5000 10000 15000 20000 25000 30000

random start
random start + stddev
random start - stddev

80

the simple scenario. The middle row of graphs shows that the controller has to do several
adjustments to correct the evaluations (there are many negative evaluations). When the
training goes on for several trials, the controller adjusts most of the “wrong” evaluations, but
is not capable of fully correcting them. In fact the bottom row of graphs shows that there are
some residual negative evaluations, and that the positive evaluations are still quite irregular.
This is caused by both the simplicity of the contrast re-mapping and the neural architecture of
the evaluator that is based on a simple two layer neural network with few degrees of freedom
(cf. discussion in s. 6.4.5). An attempt to further analyse the reasons for the shape of the final
gradient field in the case of complex scenarios is done in s. 6.4.2.

Figure 6.9: The graphs shows the gradient field of the evaluations V'π[yt] for the three goals (three
columns) of the complex scenario with landmarks inside the arena. Cf. the label of Figure 6.7 for the

interpretation of the graphs.

Figure 6.10 shows the learning curves of the controller in the case of the more complex

scenario, for the first goal (northeast). The first interesting fact is that the controller is capable
of coping with the irregularity of the evaluation gradient field just considered and to solve the
task. In fact, the performance of the simulated robot improves from about 1400 - 1600 to
about 25-40. The second fact is the difference between the random start and the fixed start

81

simulations. Why with the complex scenario is there this difference while there was no
difference for the simple scenario (cf. Figure 6.8)? A tentative explanation is that the random
restart favours the correct updating of all the evaluations, and this in turn favours a correct
training of the actor. In contrast, the fixed-restart simulations predominantly visit a few
particular states, causing problems when other states are visited (cf. Barto et al., 1995). This
difference is more important for the complex scenario because, as we have seen,
generalisation tends to produce less correct evaluations.

The difference of the initial performance between the simple and complex scenario
simulations is not significant given the large variance of the performance itself at the
beginning of the simulations.

Figure 6.10: Left: learning curves with the complex scenario with landmarks inside the arena, for both
the random and the fixed start conditions. The y-axis indicates the number of steps per goal reached,

averaged over the last 100 successes (a simple average is considered before 100 successes are
accumulated), and averaged over 10 simulations run with different random seeds. The x-axis indicates
the steps. Right: graph that shows the standard deviation of the simulation run with the random start

condition.

This section is concluded with an observation on the issue of the “TD(λ)” algorithm

(Sutton and Barto, 1998, p. 163-191) that parallels the generalisation property of controllers
that use function approximation methods (cf. s. 13.2.8). The TD(λ) algorithm is a
reinforcement learning algorithm that allows the controller to extend the effects of one backup
to many states visited before the current state. As we have seen, the generalisation property of
the neural controller used here was already capable of extending the effect of one backup to
several other similar states. These effects are similar to the effect that the TD(λ) algorithm
would have produced. Indeed, a preliminary exploration of the TD(λ) algorithm within the
scenarios considered here has shown that the algorithm did not improve the performance
significantly, because generalisation already extended the effects of learning to several states.
For these reason the TD(0) algorithm has been adopted in the rest of the research.

6.4.3 Aliasing Problem and Parameters' Exploration

This section concentrates on the “aliasing problem” (cf. s. 13.2.2) and on the exploration of
some parameters of the controller.

0

200

400

600

800

1000

1200

1400

1600

1800

0 10000 20000 30000 40000 50000 60000 70000 80000

random start

fixed start

-500

0

500

1000

1500

2000

2500

0 10000 20000 30000 40000 50000 60000 70000 80000

random start
random start + stddev
random start - stddev

82

Figure 6.11: Results of three simulations run with the three different goals (indicated by stars) and
various scenarios. The three rows of graphs refer to the three goals. Left column of graphs: scatter of
the positions occupied by the simulated robot, where one dot indicates one position occupied by the

simulated robot. The dots have been collected running the simulations for several cycles after the
simulated robot achieves a steady good performance. The higher the relative density of the dots on an

area of the arena, the more likely that the simulated robot occupies that area of the arena while
moving. Right columns of graphs: evaluation gradient fields corresponding to the scenarios/tasks
showed on the left column. The arrows highlight the areas where the evaluations appear high in

comparison to their surroundings. Compare these areas with the scatter graphs on the left: they tend to
correspond to areas with a high density of dots.

Aliasing Problem. The aliasing problem originates from the simplicity of the sensory
apparatus of the simulated robot. This returns only partial information about the current state
of the environment, for example the position currently occupied by the simulated robot. This
can generate confusion between states that are different but appear to be similar through the
simulated robot's sensory apparatus. Figure 6.11 shows that the aliasing problem is one of the
major causes of the irregularity of the gradient field observed in Figure 6.9. They show that
the problem is particularly impairing when some positions are very similar to the goal

position. In fact in these cases the evaluator tends to assign high evaluations to them, as it
does for the goal position. This gives a wrong signal to the actor that learns to drive the
simulated robot toward positions with high evaluations.

Figure 6.12: Left: Scenario with one goal (
circle). Right: The activation of the sensor
(bottom). Notice that the two images diff

southwest corner, while the other two landm
if they are different. The letters near the lan

“image” of the retin

To confirm this interpretation of the

the particular scenario shown in Figure 6
view very similar to the view from the g
the aliasing problem. The simulation con

Figure 6.13: Left: Scatter graph of the pos
simulation when the performance

Figure 6.13 shows the scatter grap

when the performance has stabilised, an

 SW NW C

SE

NW
 SW
C
star
s at
er o
ark
dm
a’s

 pr
.1
oa
sis

itio
 has

h o
d t
 SW C SE
83

) that creates an aliasing state (indicated by the white
 the goal position (top) and at the “aliasing” position
nly for the position of one landmark, the one at the

s visible in the two situations appear quite similar even
arks help to identify their respective positions on the

 activation shown on the right.

evious results, a simulation has been run by using
2. In this scenario there is an area that generates a
l position, hence it should be strongly affected by
ts of a sequence of many trials with random start.

ns occupied by the simulated robot in the “aliasing”
 stabilised. Right: Evaluation gradient field.

f the positions occupied by the simulated robot
he corresponding evaluation gradient field. While

84

the performance is still good (about 25) the scatter graph shows that the simulated robot is
“attracted” by the “aliasing area” that has an image similar to the image of the goal area. The
right part of the figure shows that the reason of this is that the evaluations are high in this
area.

Probably there are several sources of errors that explain the irregularity of the gradient
fields shown in Figure 6.9 and Figure 6.11, for example the small number of degrees of
freedom available to the controller and the high level of the learning rates used (cf. s. 6.4.5
and last part of this section). However, the aliasing problem seems to be among the most
important ones.

6.4.4 Parameter Exploration

Some other simulations have been run to explore the effects of using parameters with values
different from the ones used in the previous simulations.

If the noise of the compass and the sensors is augmented, the aliasing problem gets
worse: doubling their size (variance and probability respectively) prevents learning from
converging because the simulated robot gets stuck in areas with high erroneous evaluations.
Compass noise is particularly disruptive since the system is not capable of adjusting image
rotations. The controller is very robust with respect to the noise of the effectors. Doubling its
variance does not prevent the critic and actor from converging.

Augmenting the number of sensors improves the quality of the gradient field, but only if
there is no noise in the sensors and the compass. In this respect, the noise in the compass is
very disruptive since the advantages of having many sensors, each with a small scope, are
eliminated if the sensors have a varying alignment with magnetic north.

The learning rates are quite important. High levels of the learning rates, around 0.1, such
as the ones used in this section, allow a quick convergence of the evaluations, as shown by the
first row of graphs of Figure 6.7 and Figure 6.9, and hence of performance. However, they
also have three drawbacks, observed in several simulations. One is that they make the
gradient field quite unstable and changeable in the course of the simulations. The second is
that if they are too high (more than 0.1) they cause the evaluations to “explode” towards high
positive and negative values. The third is that they augment the negative effects of the aliasing
problem: the simulated robot gets stuck in areas where the evaluation gradient field has local
maxima more easily. In the course of the research the learning rates have usually been chosen
as high as possible but low enough to keep these drawbacks under acceptable limits.

6.4.5 Why the Contrasts? Why no more than the Contrasts?

Now there are enough elements to justify the use of the “contrast pre-processing” illustrated
in s. 6.2. We have seen that the aliasing problem is quite impairing when complex scenarios
with landmarks inside the arena are used. It has been found that directly using the sensors'
activation pattern as input for the evaluator and actor worsens the situation. The reason is that
the local maxima of the evaluation gradient field illustrated previously are caused not only by
the aliasing problem, which depends on the limitations of the simulated robot's sensors, but
also by the small amount of degrees of freedom of the resulting evaluator and actor. In
particular with 50 sensors and no contrast re-mapping, the evaluator has only 50 weights. This
has the effect that the same weights are used for situations that are similar, and this in turn
worsen the aliasing problem.

With the contrasts re-mapping, the evaluator and actor has 100 weights. This means that
the expansion of the input space into a bigger space before feeding the networks augments the

85

degrees of freedom of the two networks (cf. also Haykin, 1999, p. 257-258). Moreover,
contrary to the previous situation where all the sensors corresponding to a landmark are active
at each time step, few features are now active, namely only the ones that correspond to the
two edges of each landmark. This allows the features to be more selective, and so alleviates
the aliasing problem.

In the previous section we have seen that, nothwithstanding this improvement, the
aliasing problem is still present when the contrast pre-processing is used. Why was it decided
not to use more sophisticated forms of pre-processing, such as the ones listed in s. 12.3? This
has not been done for several reasons:
• The focus of this research was not the solution of the aliasing problem.
• The solution of the contrasts is very simple, so it does not complicate the interpretation of

the results about planning, presented in the following chapters.
• The solution using contrasts is computationally very fast, so it has made it possible to run

the numerous experiments illustrated in the following chapters in an acceptable amount of
time.

• With few precautions, it has been possible to keep the aliasing problem under control. In
particular it has been decided to use the scenarios presented in Figure 6.1 and Figure 6.2.
These are scenarios where the aliasing problem is not so impairing. This is shown in
Figure 6.14 that shows the scatter graph and the evaluation gradient field for one goal of
the second of these scenarios, the more complex one. The situation is similar for the other
goals used throughout the research within this scenario.

•

Figure 6.14: A scenario that is only slightly affected by the aliasing problem, as the scatter graph and
the evaluation gradient field on the right show. Cf. the label of Figure 6.11 for the interpretation of the

graphs.

6.5 Temporal Limitations of Discounted Reinforcement Learning

This section focuses on the capacity of discounted reinforcement learning to deal with
problems whose solutions last for long periods of time. “Discounted” reinforcement learning
is the most popular form of reinforcement learning (cf. Sutton and Barto, 1998), used
throughout this research and illustrated in chapter 3. In this kind of reinforcement learning
method the optimal evaluations decrease exponentially for states progressively more distant
from the goal (cf. Figure 5.3). This section shows some experiments that suggest that this
form of reinforcement learning has a limited capacity to deal with problems whose solution

86

last for long periods of time. In fact the states far from the goal have evaluations that are close
to 0. As a consequence the learning signal built on the basis of two of such evaluations
relative to two contiguous states (cf. Eq. 6.3) is also close to 0. This has two negative
consequences: (a) learning based on this signal is slow; (b) the signal can be easily disrupted
by noise.

A simulation has been run to support these ideas. The scenario used in this simulation is
shown in Figure 6.15. Unlike the previous sections, the simulated robot is now endowed with
100 visual sensors (200 contrast units). These sensors and the compass are not affected by
noise. The simulated robot moves in a one-dimensional space, say a corridor. At the left end
of the corridor there is the start state, while at the right end there is the goal state.

Figure 6.15: The scenario used to test the capacity of discounted reinforcement learning to deal with
long periods of time. The black circles are the landmarks, the white circle is the start, the star is the

goal, and the empty rectangle containing the start and the goal is the corridor along which the
simulated robot is transported by the trolley. The trolley moves along the direction shown by the

arrow.

The simulated robot has only two actions: move_east and move_west. The simulated

robot does not move autonomously. During each trial the simulated robot is “transported on a
trolley” from the start to the goal following a straight line, for the reasons explained below.
When the trolley with the simulated robot reaches the goal a new trial starts. Within a trial, the
trolley reaches the goal in 100 steps.

During these trials, the evaluator of the simulated robot is trained as usual, so after some
trials the evaluations should converge to the optimal values and their gradient field should
assume a typical exponentially decaying shape. At the same time the actor is trained in a
special way. At each state the merit of the two actions is updated as if the simulated robot had
selected both actions. This means that the go_left action is updated with an error built on the
basis of the evaluations of the current and the previous state, while the go_right action is
updated with an error built on the basis of the evaluations of the current and the following
state. The use of the trolley and this special updating of the actions' merit are used to eliminate
the effects of different frequencies of visit of the states, and the effects of different
frequencies of the selection of actions, that would been produced by the simulated robot
acting autonomously. This would make the interpretation of the results less clear.

87

Figure 6.16 shows the simulated robot's evaluation gradient field over the 100 states
occupied by the trolley when it goes from the start to the goal. This figure shows the gradient
field after 5, 50, and 500 trials. The top graph of the figure shows that the evaluations for the
states near the goal have started to assume an exponentially decaying shape.

Figure 6.16: Evaluations (y-axis) for the 100 states (x-axis) visited by the simulated robot on the
trolley in each trial, after 5 (top), 50 (centre), 500 (bottom) trials. State 0 on the x-axis is the start while

state 100 is the closest to the goal.

Figure 6.16 also shows that the generalisation property of the evaluator allows a rapid

diffusion of the values backward: states more than 5 steps far from the goal, that without
generalisation would have evaluations equal to 0, have positive evaluations. However the
graph also shows that generalisation has some drawbacks. For example the three “waves” of

-0.1
0

0.1
0.2

0.3
0.4

0.5
0.6

0.7
0.8

0.9
1

0 10 20 30 40 50 60 70 80 90 100

-0.1
0

0.1
0.2

0.3
0.4

0.5
0.6

0.7
0.8

0.9
1

0 10 20 30 40 50 60 70 80 90 100

-0.1
0

0.1
0.2

0.3
0.4

0.5
0.6

0.7
0.8

0.9
1

0 10 20 30 40 50 60 70 80 90 100

88

high evaluations before the final wave close to the goal, are caused by the fact that the
simulated robot encounters some landmarks that are in the same direction/position of other
landmarks viewed from the goal position. The evaluation of these positions is high because
the image that they produce is similar to the image at the goal position (aliasing problem).

Figure 6.17: Difference between the probabilities of the go_east and go_west actions (y-axis), in
correspondence to the 100 states visited by the trolley and the simulated robot (x-axis), after 5 (top),

50 (centre), 500 (bottom) trials.

The central graph of the figure shows that after just 50 trials the evaluation gradient field

has almost assumed its final shape, even if its quality is still better for states closer to the goal.
The final accurate shape assumed by the gradient field is shown in the bottom graph, plotted
after 500 trials.

-0.1

0

0.1

0.2

0.3

0.4

0.5

0 10 20 30 40 50 60 70 80 90 100

-0.1

0

0.1

0.2

0.3

0.4

0.5

0 10 20 30 40 50 60 70 80 90 100

-0.1

0

0.1

0.2

0.3

0.4

0.5

0 10 20 30 40 50 60 70 80 90 100

89

While the evaluations change towards their optimal values, the merits and probabilities of
actions are updated according to the learning signal of Eq. 6.3. Figure 6.17 shows the
difference between the probabilities of the go_west and go_east actions corresponding to the
100 states visited, again after 5, 50, 500 trials. This difference is about 0 at the beginning of
the simulations, since the two actions have the same merits and probabilities of being
selected, and should approach 1 at the end of training, as go_east is the optimal action for all
the states visited.

The top and central graphs clearly show that the difference of the probabilities is much
higher, hence more correct, for the states closer to the goal, while it is low and even negative
for states far from the goal. This is what the experiment was intended to show. The low
evaluations for the states far from the goal have two effects:
• They cause slow learning.
• They are easily affected by noise caused by wrong generalisation, unreliable sensors, etc.,

so that they generate a wrong learning signal for the actor.
The probabilities shown in the bottom graph are even worse than the ones of the central
graph. This is an artefact of the experiment, and is caused by the fact that the evaluations are
updated according to the optimal policy and not according to the actual action probabilities
expressed by the actor, as required by the actor-critic algorithm. In fact when the evaluations
approach their optimal values, the learning signal of Eq. 6.3 becomes 0 and the training of the
actor stops or continues in the wrong direction.

What happens if the discount coefficient is increased, e.g. to 0.99, to avoid that states far
from the goal are close to 0? This has been done in a preliminary experiment, and the result
has been that the quality of the actions' probabilities associated the last 100 states before the
goal, improves. However, this does not solve the problem, it only moves it to states more
distant from the goal. In fact if the discount coefficient is smaller than 1, the evaluations will
decay exponentially and will get close to 0 for some states distant enough from the goal. On
the other hand, the discount coefficient cannot be increased too much (near 1) to face the
problem. In fact the gradient field becomes unstable if this is done: noise plus generalisation
can cause some evaluations to go over 1, and this in turn can trigger a feedback process that
causes the evaluations to explode towards big values. This has been observed in several
experiments (e.g. cf. experiments in s. 11.4.4).

Further experiments are necessary to support the results presented in this section. In
particular the results shown suggest that it would be necessary:
• To eliminate the problem of the evaluations converging to the optimal values. This could

be done by updating the evaluations on the basis of the probabilities expressed by the
actor, or by running experiments with Q learning instead of actor-critic methods.

• To eliminate the advantage of the action probabilities of states close to the goal, caused
by the fact that the evaluations progressively diffuse from the goal towards the start. This
could be done by using a trolley that moves from the goal toward the start.

These experiments with tighter controls will be done in the future. However, the results
shown here already suggest that a special attention should be paid when discounted
reinforcement learning is used for problems that involve long time periods (cf. also the results
of s. 11.4.4).

6.6 Conclusion

The chapter has presented a neural implementation of the actor-critic controller. This is at the
core of all the controllers presented in the next chapters. The novelty of the controller with
regards to previous reinforcement-learning based neural controllers is the use of a special

90

neural network, the “matcher”, to generate the reward signal when the goal state is
encountered. In the next chapters we shall see how this network, though simple from a
computational perspective, is rather important from a theoretical point of view since it allows
the planning controllers to be “taskable” (cf. section 5.1.2 and 8.4.1).

The chapter has also investigated the functioning of the evaluator and the actor, collecting
important data useful for interpreting the results presented in the following chapters. The most
important aspect investigated has been the generalisation property of the controller that
originates from its neural structure. Some simulations have shown how this property allows
the controller to learn quickly and to be robust in the presence of noise. The simulations have
also shown that in the context of reinforcement learning the well-known aliasing problem is
particularly impairing when it involves states that are similar to the goal states, because this
generates local maxima in the evaluation gradient field. A simple pre-processor, that maps the
input into contrasts, has been adopted that both allows the controller to limit the negative
effects of the aliasing problem, and is computationally very simple.

Finally, the chapter has shown some experiments and presented some arguments that
suggest that discounted reinforcement learning may have some intrinsic limits when dealing
with long periods of time, at least in the way it is usually implemented (cf. Baldassarre, 2001f,
and Linaker, 2001, for an investigation possible solutions to this problem). This issue is very
important for planning because planning expresses its full power, especially when compared
to reactive behaviour, for tasks that last for many steps. These arguments will be further
analysed and supported in chapter 11, within the study of abstract planning.

91

7 Reinforcement Learning, Multiple Goals, Modularity

7.1 Introduction

Problems Tackled. S. 4.4.1 has illustrated two characteristics of neural networks: the utility
of their generalisation property and their capacity to isolate structure common to different
problems. The same section has also suggested that these properties have a cost, namely
“interference”: when the controller is trained on a single task for a long time, the information
gathered concerning it disrupts the information previously gathered about other tasks.

An ideal neural controller should be capable of handling multi-goals tasks, of exploiting
“structure” common to them (s. 4.4.1), and of avoiding interference at the same time. This
chapter investigates if and how modularity can be used to this purpose. “Modularity” means
that the architecture of the controllers studied is made up of clusters of neural units that have
many connections within them, and relatively fewer connections with other units (cf.
Calabretta et al., 1998). In particular the chapter investigates whether it is possible to design
modular neural controllers that are capable of using the same modules for areas of the input-
output space that share common structure, and are capable of using different modules in other
cases, in order to avoid interference.

The issue of interference is very important for planning. In fact one of the strengths of
planning is its capacity to use behaviours as building blocks to pursue different goals (cf. s.
5.1.2). In this research the “building-block” behaviours considered are the “primitive” actions
(as “go north”, “go east” etc.). However the capacity of the controllers to learn several
different behaviours (directed to achieve different goals) is the starting point to scale up to
forms of planning that use more complex behaviours as building blocks (chapter 11
investigates a first simple case of neural planning where the building-block behaviours are
more complex than the primitive-actions).

Overview: A New Task and a New Controller. The previous chapter used a landmark-
navigation task with a single goal. This chapter introduces an instance of “asynchronous
multi-goal tasks” (cf. also s. 3.1, 5.1 and 6.2). A task of this type requires that the controller
pursue different goals at different times. This kind of task is introduced because it exacerbates
the problems of interference, and so it can be used to test if and how much a controller is
affected by such problem.

After this task has been defined, a modular actor-critic controller is proposed. This
architecture uses different kinds of modular networks for the evaluator and the actor. The
evaluator uses a “mixture of experts network”. The mixture of experts network could not be
used in a straightforward way to implement the actor, so a novel two-level hierarchical
architecture has been used for it. The networks of these two levels are trained with the same
algorithm used to train the actor illustrated in the previous chapter.

What is New and Related Work. Asynchronous multi-goal tasks differ from synchronous
multi-goal tasks. These are tasks where a controller has to pursue several tasks in parallel by
assigning proper weights to them. Synchronous multi-goal tasks have been studied under the

92

name of “action selection problems”. See Humphrys (1996) and Tyrrel (1993), for a brief
review of these problems and some methods proposed to solve them.

The functioning of the controller presented here, as the controller of the previous chapter,
is based on the actor-critic model (Barto et al. 1983; cf. s. 13.2.6). As mentioned, the modular
evaluator implemented here is an application of the “mixture of experts network” (Jacobs at
al., 1991; cf. s. 13.3.2). The author is not aware of previous applications of this network to
reinforcement learning problems (Baldassarre, 2001b). The capacity of the mixture of experts
network to reduce interference was one of the reasons for its introduction (Jacobs et al.,
1991). The modular hierarchical architecture and functioning of the actor used here is novel
(Baldassarre, 2001e). See also Baldassarre (2000) on the problem of interference that arises
when multiple goals are pursued with monolithic neural networks.

The idea that “global” function approximators, such as the feed-forward networks trained
with the error backpropagation algorithm used here, are badly affected by interference and are
not suitable for reinforcement learning, has already been investigated elsewhere (e.g. Sutton
and Whitehead, 1993; Samejima and Omori, 1999). These and other works also suggest that
“local” function approximators, such as the mixture of experts network used here, are less
affected by interference.

Caruana (1995) has presented research that uses feed-forward networks trained with the
error back-propagation algorithm to learn many different tasks. He has shown that such neural
networks are capable of transferring skills between tasks sharing common structure.

Calabretta et al. (1998) have presented an interesting modular neural architecture that
controls a robot that solves a complex compound task. This work uses genetic algorithms to
train the weights, so it is not directly comparable with our results. Notwithstanding this, the
work is relevant for this research since it shows that a modular controller can solve some tasks
that a monolithic controller cannot.

Chapter's Outline. S. 7.2 introduces an asynchronous multi-goal task based on the
navigation scenarios introduced in chapter 6. S. 7.3 presents one controller with a
“monolithic” neural-network architecture, and a second controller with a modular neural-
network architecture. The simulations presented in s. 7.4 show that the monolithic controller
is very slow in learning because it is affected by interference, while the modular controller has
a relatively good performance. This section also presents some data about how the modular
controller's performance is based on emergent functional modularity. Finally s. 7.5 illustrates
the limits of the controllers, and s. 7.6 draws the conclusions.

7.2 Scenario of Simulations: An Asynchronous Multi-Goal Task

The scenario used in this chapter is shown in Figure 7.1. This is the same “complex” scenario
shown in the previous chapter (cf. s. 6.2 and Figure 6.2). The only difference is the position of
the goals. The robot used in the simulations has the same properties of the one used in the
previous chapter (cf. s. 6.2).

The simulated robot's task is to reach three different goal positions in the arena. At the
beginning of the simulation the simulated robot is set at the start position (cf. Figure 7.1) and
has to reach the east goal. Then each time the simulated robot reaches a goal, another goal
randomly drawn from the three goals is assigned to it until the simulation stops. Since the
simulated robot’s step size is 0.05, the arena’s size is 1 by 1, and the distance between each
goal is about 15 steps, the average optimal straight path between two goals is about 10 steps
long (i.e. (15+15+0)/3) ignoring action noise and problems with the obstacles.

93

Figure 7.1: The scenario used in the simulations. The scenario contains three goals (north-west, east,
and south-west, marked with a star), the start (white square), five landmarks (black circles), the scope
of the simulated robot's 50 visual sensors (delimited by the rays), and the robot (white circle at origin

of rays).

7.3 Architectures and Algorithms: Monolithic and Modular Neural-
Networks

This section illustrates the details of the architecture of the two controllers used in this
chapter. The first controller has an evaluator and an actor based on monolithic neural
networks, while the second has an evaluator and an actor based on modular neural networks.

Monolithic Neural-Network Controller. The architecture of the first controller is shown in
Figure 7.2. The general structure of the architecture is the same as the architecture of the
controller presented in chapter 6 (cf. Figure 6.3). The only difference with that architecture is
that now the evaluator is a three-layer feed-forward network instead of a two-layer feed-
forward network, and the actor is composed of eight (one per action) three-layer feed-forward
networks instead of eight two-layer feed-forward networks.

The functioning of the whole controller is the same as the one of chapter 6, with the
evaluator that learns to evaluate the states and the actor that learns the “merits” (pseudo-
probabilities) of the actions. The only difference is that the error backpropagation algorithm is
used to train the three-layer networks used here instead of the Widrow-Hoff rule, that is
applicable to two-layer networks only (cf. s. 13.3.1).

Modular Neural-Network Controller. The architecture of the modular controller is
presented in Figure 7.3. This graph, together with other similar graphs used in the following
chapters, uses boxes to indicate networks without depicting the internal details of them. This
has been done because the compound architectures presented from now on have several
components so that they would have produced overly complicated graphs if all the details had
been reported.

The main architecture and functioning of the modular controller is based on the controller
presented in chapter 6. The differences are in the architectures of the evaluator and actor that
are now modular. The actor is a modular network composed of 6 “expert networks” and 1
“gating network”. Each expert is a two-layer feed-forward neural network that gets the goal

94

and the visual contrasts as input, and has 8 sigmoidal output units that locally encode the
actions. As in the actor of chapter 6 (cf. Eq. 6.1), the activation mq (“action merit”) of the
output units is sent to a stochastic selector where a stochastic “winner-take-all competition”
takes place to select one action. The probability P[.] that a given action aq becomes the
winning action awin is given by:

 P[aq = awin] = mq / ∑f mf Eq. 7.1

The role of the gating network is to select an expert that, in its turn, selects the actions to

be executed in the way just shown. The gating network has the same input and architecture as
the experts, but it has only six sigmoidal output units, each corresponding to one expert,
instead of eight. The gating network functions in the same way as the experts do, with the
only difference that its output units and their activation (merits) refer to the six experts instead
of the eight actions. Similarly to the experts, the gating network uses a stochastic “winner-
take-all competition” to select the “winning” expert.

Figure 7.2: Components of the monolithic controller. Arrows indicate that a pattern is “copied” from
one unit/layer to another unit/layer. Dotted arrows indicate the learning signal. For each layer only few
units have been drawn. In the case of the actor only the networks relative to three actions out of eight
have been drawn. The total number of units of each layer is indicated in round brackets, except for the

hidden units whose number varied in different simulations.

The evaluator is a “mixture of experts neural network” composed of 6 experts and 1

gating network. S. 13.3.2 discusses further details of this architecture, and presents the
mathematical justification of the training algorithm described below in intuitive terms. Each
expert is a two-layer feed-forward neural network that gets the goal and the visual contrasts as
input. With its linear output unit, the evaluator yields the estimate V'π[yt] of the evaluation
Vπ[yt] of the current contrast pattern yt, defined in the usual way on the basis of the future
rewards r (cf. s. 13.2.4):

Feature extractor

Actor

Goal (100)

TD-critic

Evaluator

Visual sensors (50)

Contrast units (100)

Learning
signal Effectors

Stochastic selector Matcher
Action
units
(8)

95

 Vπ[yt] = E[γ0 rt+1 +γ1 rt+2 +γ2 rt+3 + …] Eq. 7.2

where γ ∈ (0, 1) is the discount factor, set at 0.95 in the simulations, and E[.] is the mean
operator. The output of the experts is weighted and summed in order to compute V'π[yt]:

 V'π[yt] = Σk[vk gk] Eq. 7.3

where vk is the output of the expert k, and the weight gk is computed as the “softmax
activation function” of the output units' activation ok of the gating network:

 gk = exp[ok]/Σf[exp[of]] Eq. 7.4

Notice that Σk gk = 1.
As usual the TD-critic is a neural implementation of the computation of the “temporal-

difference error” et (“learning signal” in Figure 7.3) defined as:

 et = (rt+1 + γ V'π[yt+1]) - V'π[yt] Eq. 7.5

Now it is also possible to compute the specific temporal-difference error ekt for each
expert:

 ekt = (rt+1 + γ V'π[yt+1]) - vk[yt] Eq. 7.6

Figure 7.3: The modular controller. Arcs indicate forward connections that “copy” a pattern from one
layer to another. Dashed arrays indicate the learning signal used to update the weights of the evaluator

and the actor.

Each evaluator's expert is trained on the basis of its temporal-difference error. This

assumes the role of error in a supervised learning algorithm. In particular the weights of the
experts are updated so that the estimate vk[yt] yielded by each of them tends to be closer to the

Matcher

100 100

Evaluator

100

Actor

Stochastic selec.

8

100

50

100

Goal

Contrasts

Input

Learning
signal

TD-Critic

100 100 100

Gating net. Gating net.

96

target value (rt+1+ γ V'π[yt+1]). This target is a more precise estimate of Vπ[yt] because it is
expressed at time t+1 on the basis of the observed rt+1 and the new estimate V'π[yt+1]. The
formula (a modified Widrow-Hoff rule, cf. Widrow and Hoff, 1960, and s. 13.3.1) used to
update the weights of each expert is:

 ∆wkj = η ekt yj hk Eq. 7.7

where η is a learning rate, wkj is a weight of the expert k, and yj is the activation of the
evaluator's input units at time t. hk (absent in the Widrow-Hoff rule) is the “updated”
contribution of the expert to the global answer V'π[yt], and is defined as (cf. s. 13.3.2):

 hk = gk ck / Σf[gf cf] Eq. 7.8

where ck is defined as:

 ck = exp[-0.5 ekt
2] Eq. 7.9

and intuitively can be interpreted as a measure of the “correctness” of the expert k. Cf. s.
13.3.2 for a more rigorous (but less intuitive) interpretation of this measure. Notice that Σk hk
= 1.

The weights zkj of the evaluator's gating network are updated to increase the contributions
gk (to the production of the evaluation) of the experts that has produced a low error:

 ∆zkj = ξ (hk - gk) yj Eq. 7.10

where ξ is a learning rate.
The actor's experts are trained according to the TD-critic's learning signal et. The

updating of the actions' merit of the selected expert (and only this) is done by updating the
weights of the neural unit corresponding to the selected action awin (and only this) as follows:

 ∆wwin j = ζ et (4 mwin (1 - mwin)) yj Eq. 7.11

where ζ is a learning rate, and (4 mwin (1 - mwin)) is the derivative of the (sigmoidal) transfer
function multiplied by 4 to homogenise the size of the learning rates of the actor and the
(linear) evaluator (in fact the maximum of that derivative of the transfer function is 0.25 for
the actor, and 1 for the evaluator).

The weights of the actor's gating network corresponding to the winning expert are
updated through Eq. 7.11, where the winning expert is considered instead of the winning
action. At the beginning of the simulation the weights of the evaluator and actor are
randomised in the interval [-0.001, +0.001].

7.4 Results and Interpretation

As mentioned, the task of the simulated robot was to reach one of the three goal positions
shown in Figure 7.1. When a goal was reached a new one (randomly chosen between the three
goals) was assigned to the simulated robot and the simulated robot had to reach it from its
current position. Two groups of simulations have been run by using this scenario. The first
group of simulations has used the controller with the monolithic architecture, and the second
group has used the controller with the modular architecture. The performance has been

97

measured in terms of number of steps taken to achieve a goal, averaged over the last 100
goals reached (at the beginning, with less than 100 goals reached, a simple average has been
used).

A parameter search has been done in order to optimise the number of hidden units of the
monolithic controller. The results have shown that with 3 hidden units the controller is not
capable of solving the task. With 5 and 10 hidden units the controller is capable of solving the
task and shows an equivalent performance in the two cases. The results shown below refer to
the case with 10 hidden units.

Figure 7.4: Top: the performance of the two controllers (y-axis) measured as number of steps per goal,
averaged over the last 100 successes, and averaged over 10 runs of the two simulations repeated with
different random seeds. The performance has been plotted against the cycles (x-axis). The thin curve
refers to the “monolithic” controller, while the bold curve refers to the modular controller. Bottom:

graphs showing again the learning curve of the monolithic controller and the modular controller, but
also these curves plus and minus their respective standard deviations for the ten random seeds. In the

case of the monolithic controller 10 hidden units and a learning rate of 0.1 have been used for the
learning networks of both for evaluator and actor. In the case of the modular controller a learning rate
of 0.02 has been used for all the learning networks of the controller, with the exception of the gating

network for which a learning rate of 0.2 has been used.

A parameter search has also been done in order to optimise the learning rates of the

evaluator and actor of the controllers. With one exception (see below) the same learning rate
value has been used both for the evaluator and actor. In the case of the monolithic controller,
learning rates set at 0.5 cause the evaluations to explode towards positive values. Learning
rates set at 0.2 lead the simulated robot to get stuck in areas of the gradient field with local
maxima for long times before the performance (measured as number of steps per goal, see
below), converges to about 20 steps per goal. The data reported below refer to simulations run

-500

0

500

1000

1500

2000

2500

3000

3500

4000

0 1000000 2000000 3000000 4000000 5000000 6000000
0

200

400

600

800

1000

1200

1400

1600

0 500000 1000000 1500000 2000000

0

500

1000

1500

2000

2500

0 1000000 2000000 3000000 4000000 5000000 6000000

with learning rates set at 0.1, for which the performance converges quite smoothly (but not yet
completely, see below) to good levels.

In the case of the modular controller, the learning rates set at 0.05 lead to quick learning,
with a performance of about 20 steps per goal after only 200,000 cycles of the simulation.
However, the evaluations are very unstable, i.e. they continue to change at each time step, and
with some random seeds the simulated robot gets stuck in local minima of the gradient field.
For this reason the data reported below refer to simulations run with learning rates set at 0.02,
for which the performance converges smoothly and without problems to good levels.
Unfortunately, and this is a drawback of the modular controller, to obtain this result the
learning rate of the gating network of the evaluator has been set at a value different from the
other learning rates, namely 0.2. In fact, without this learning rate the specialisation of the
evaluator (see below) failed for some random seeds, in the sense that the evaluator used one
expert for two goals and the performance of the controller was disrupted.

Figure 7.4 reports the performance of the two controllers with the settings just described.
The performance is measured in terms of number of steps taken to achieve a goal, averaged
over the last 100 successes, and plotted against the cumulated cycles of the simulation. The
graph shows the average for 10 repetitions, with different random seeds, of the two
simulations. It can be seen that in the case of the monolithic controller the performance
improves from about 1,000 to about 20 after 5,000,000 steps. In the case of the modular
controller the performance improves from about 1,000 to about 20 after 1,000,000 steps.
Recall that the optimal performance, ignoring noise and obstacles, would be about 10 steps, so
the performance can be considered satisfactory. Moreover, the variance of the monolithic
controller is quite large since the controller sometimes still got stuck in areas with a local
maximum of the evaluation gradient field with the learning rates used, 0.1. With even lower
learning rates, 0.05, the variance was smaller and the curve was smoother, but the
performance converged after about 9,000,000 cycles.

Figu
aft

grad
posit
indi

W

to be
contr

Evaluator's expert: 2
98

re 7.5: Data about the emergent functional modularity of the evalu
er the performance converged (1 random seed out of 10). Each gra
ient field of the evaluations yielded by the evaluator in 400 differe
ion corresponds to one of the 20×20 cells of the graph. For each gr
cates the position of the goal pursued. Under each graph the evalua

for the evaluations corresponding to the particular goa

hat causes this difference in the performance of the two co
 the interference of learning to pursue the different goals.
oller much more than it affects the modular controller. In
Evaluator's expert: 6
Evaluator's expert: 5
ator of the modular controller
ph, one per goal, reports the
nt positions of the arena. Each
aph, the cell with a bold border
tor's expert that is responsible
l is indicated.

ntrollers? The cause is likely
 This affects the monolithic
fact, after the experts of the

99

modular controller start to specialise in different areas of the input-goal-output space,
pursuing one goal has little disruptive effects on the skill (weights) learned for the other goals.

Figure 7.5 presents some data about the “emergent functional modularity”(cf. Calabretta
et al., 1998), i.e. the specialisation of the experts of the evaluator, of one of the 10 runs with
the modular controller. The other random seeds have produced results with analogous quality.
The graph shows the evaluation gradient field for the three goals when the performance has
converged. The evaluator deals with each goal by using a different expert. In particular for
each goal and in each possible position of the arena, the “weight” of one particular expert in
determining the evaluation (cf. Eq. 7.4) is over 0.99. This probably means that different
positions in the arena need to be evaluated in a different way for the three goals, so that the
algorithm uses a different expert for each goal to avoid interference. This also means that the
connections from the (contrast) input pattern to the evaluator's gating network are redundant:
the information about the goal to pursue is sufficient to select an expert. Notice that the
controller is capable of not using some of the resources available (experts 1, 3, 4). These
resources could be used for other goals.

Figure 7.6: Data about the emergent functional modularity of the actor of the modular controller (1
random seed out of 10). The first row of graphs reports the ordering number of the actor's expert with

the highest probability of being selected, for each of 20×20 positions on the arena. The grid of
numbers can be overlapped to the arena to find the corresponding positions. A number 0 indicates a

position occupied by a landmark. The second row of graphs reports the histograms that summarise the
frequencies of use of the experts illustrated in the first row of graphs.

With regards to the actor, Figure 7.6 shows that the specialisation of the experts is much

less pronounced. In particular the graphs in the first row show that while pursuing a particular
goal the actor uses different experts in different position of the arena. The histograms of the
second row summarise the frequency of use of the different experts for the different goals.
Clearly the actor tends to use different experts when dealing with different goals. However
now, unlike what happened for the evaluator, the visual input plays an important role and the
actor uses different experts in different positions of the arena. Moreover (e.g. see expert 1 for
goal 1 and 3) the same experts are used for different goals. Notice that in the actor, as in the

0
50

100
150
200
250
300
350
400

1 2 3 4 5 6
0

50
100
150
200
250
300
350
400

1 2 3 4 5 6
0

50
100
150
200
250
300
350
400

1 2 3 4 5 6

1 1 1 2 1 1 1 2 2 2 2 2 2 1 1 1 1 2 2 2
1 5 0 5 2 2 1 2 2 2 1 1 1 1 1 1 1 2 2 1
2 2 5 5 2 2 2 2 2 2 2 2 1 1 1 1 1 1 2 1
1 1 5 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 2
1 5 5 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 0
1 5 1 1 1 2 2 1 0 0 2 2 1 1 2 2 2 2 2 0
1 5 1 1 1 2 2 2 0 0 1 1 1 2 2 2 2 2 6 6
2 5 1 1 1 1 2 2 2 1 1 1 1 1 2 2 2 6 6 1
2 5 1 1 1 1 1 1 1 1 1 1 1 2 2 2 6 1 1 1
1 1 1 1 1 1 1 1 2 1 1 1 2 2 2 1 1 1 2 1
5 5 1 1 1 1 1 1 2 2 1 2 2 1 1 1 2 2 1 2
5 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 2 2 2 2
1 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 6 2 1 1
5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 1 1 1
0 0 1 1 2 2 1 6 2 1 1 1 1 1 2 2 1 1 1 1
2 2 1 1 1 6 6 6 1 0 0 6 2 1 1 2 2 2 2 1
1 1 1 1 2 2 2 2 1 0 0 1 1 1 2 2 2 2 2 1
1 1 1 1 2 5 5 5 1 2 2 2 2 6 2 2 2 2 2 2
1 1 1 2 5 5 5 1 2 2 2 2 2 2 2 2 2 2 2 2
1 1 1 1 1 2 1 5 1 5 5 2 2 2 2 2 1 5 2 2

6 6 6 3 3 1 1 1 3 6 6 6 3 3 3 1 1 3 3 6
1 4 0 3 3 3 1 6 6 6 6 6 6 1 3 1 1 6 6 6
6 6 5 3 3 3 6 3 3 3 6 3 6 6 1 6 6 6 6 6
1 6 5 6 3 6 3 6 3 3 3 3 3 6 3 6 3 6 6 6
3 6 5 6 1 6 6 3 6 6 6 6 3 3 3 3 3 3 3 0
3 5 1 1 6 6 6 6 0 0 6 6 6 6 3 3 3 3 3 0
6 6 6 1 6 3 3 6 0 0 6 6 6 1 6 6 6 6 6 6
6 5 1 1 6 6 6 6 6 6 3 6 3 6 6 6 6 6 6 6
4 5 1 1 6 6 6 6 6 1 6 6 6 6 6 6 6 6 6 6
6 5 1 6 1 6 6 1 3 3 6 6 6 6 6 6 6 6 6 3
5 5 6 6 3 6 1 6 6 6 6 6 6 6 6 6 6 6 6 6
6 5 1 3 3 3 6 6 6 6 6 6 1 6 6 6 6 6 6 6
6 6 1 3 6 3 6 6 6 6 6 6 1 3 6 6 6 6 6 6
6 6 3 6 6 6 6 6 3 6 6 6 6 6 6 6 6 6 6 6
0 0 3 6 3 6 6 6 6 6 6 6 6 3 3 6 6 6 6 6
6 6 3 6 6 6 6 6 6 0 0 6 6 6 6 6 6 6 6 6
6 6 3 3 6 6 6 6 6 0 0 6 6 6 6 6 6 6 6 6
6 1 6 6 6 6 5 6 6 6 6 3 6 6 6 6 6 6 6 6
5 3 6 6 6 6 5 6 6 6 6 6 6 6 6 6 6 6 6 6
6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 0 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 5 1 1 1 1 1 3 1 1 1 1 1 1 1 1 1 1 1
1 1 5 1 1 1 1 1 3 1 1 3 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 5 5 1 1 1 1 1 1 1 0
1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 3 3 0
1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 6 6
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1
1 1 1 1 1 5 1 1 1 0 0 1 1 1 1 1 1 1 1 1
1 1 1 1 1 5 5 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 5 5 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 5 1 1 1 1 1 1 5 1 1

100

case of the evaluator, there is a partial use of the resources available (marginal use of experts
3, 4, and 5).

Further investigation should verify if the different use of the experts of the evaluator and
actor are caused by the differences in the role they play (learning of evaluations and learning
of the policy) or if it is caused by the difference between the architectures and algorithms
employed for them.

7.5 Limitations of the Controllers

The chapter has shown that the monolithic controller learns very slowly when dealing with an
asynchronous multi-goal task. A modular controller has shown a better performance.
Unluckily, the modular controller has limitations, too. As mentioned it needs a fine-tuning of
the leaning rates of the evaluator's gating network, otherwise the specialisation of the experts
can fail, in the sense that the same expert is used for more than one goal, and this can reduce
the performance of the controller. These problems are probably caused by the interference
between the experts, in turn caused by the gating network of the mixture of experts network
used here. This is based on a soft-max function. See Ramamurti and Ghosh (1997) on this
problem, and on the proposal of a gating network, based on local function approximation, that
is not affected by these problems.

Another limitation is the “strong” functional modularity of the evaluator that does not
allow the controller to easily scale up to many goals. In fact the number of experts available to
the evaluator fixes the maximum number of goals that can be pursued. If a further goal is
added over this limit, the performance abruptly deteriorates, while a “graceful degradation”
would be desirable.

7.6 Conclusion

This chapter has introduced a task where a simulated robot has to pursue several goals at
different times. These kinds of tasks are relevant if one wants to test if a neural controller is
scalable to more complex scenarios and is capable of exploiting the full potentiality of neural
networks in terms of their capacity to discover common structure underlying different
goals/problems and to avoid interference. Some experiments have shown how monolithic
networks with hidden units, even if potentially capable of discovering common structure, are
affected by problems of interference that slow learning. A controller based on a modular
architecture has been designed and implemented to overcome this problem. The simulations
have shown that this controller is capable of limiting the effects of interference by exploiting
emergent functional modularity.

This chapter concludes with a comment on the performance of the mixture of experts
network of the evaluator. The simulations suggest that this architecture may be quite rigid in
its capacity to discover underlying structure and avoid interference. In fact it either uses
different experts for the different goals, or it uses the same expert for more than one goal.
Perhaps, in the task considered using different experts for different goals is the correct thing
to do. Alternatively it is possible that the mixture of experts network is actually rigid, and not
capable of discovering underlying structure between different goals as it should do. For
example, the behaviour of the architecture and algorithms of the actor that generate a fuzzy
specialisation of the experts might be considered an indication of higher flexibility. These
issues need to be further investigated.

101

8 The Neural Forward Planner

8.1 Introduction: Taskability, Planning and Acting, Focussing

Problems Tackled. This chapter deals with the problems of taskability of the Dyna-PI
architecture, with the problem of focussing planning around relevant states, and with the
problem of interleaving acting, planning and re-planning.

We have seen in s. 5.1.4 that the Dyna-PI architecture is not taskable in a strong sense. In
s. 5.1.3 a double test has been given to decide operationally if a system is taskable. A system
is taskable if: (a) it works on the basis of the goal information only; (b) the first time that it
reaches the goal it can reach it with an efficiency superior to the efficiency of the
corresponding reactive system (if there is one) or the random solution. Here a new planning
controller will be presented: the “neural forward planner” (or simply “forward planner”). This
controller is inspired by the Dyna-PI architecture, but contrary to this, it passes the two tests
of taskability.

S. 5.3 has explained why it is better to use “partial policies” instead of “full policies”
defined for all states. S. 3.4 has argued that “trajectory sampling” is a way to focus planning
on relevant states. By proposing the forward planner, this chapter aims at specifying and
implementing these ideas.

S. 2.4.4 has suggested that the best strategy between the two extremes of universal
planning (full policy) and pure re-planning is to have a partial policy that contemplates what
to do in the situations most likely to occur, and to do re-planning when things are too different
from expectations. The neural planner proposed here specifies and implements this strategy.
In fact on one hand it prepares a partial policy focussed on the states around the current state,
the goal state, and the states between these two, and on the other hand it triggers re-planning
when the simulated robot encounters “unexpected” states during action execution.

Overview of the Controller. The planning controller presented in this chapter is built by
adding some new components and algorithms to the controller presented in chapter 6, that is
based on the actor-critic methods. The idea exploited here is the one at the basis of the Dyna-
PI architecture (cf. s. 3.3): the evaluator and actor are trained through experience generated
through the model of the environment instead of real experience. The components added to
the basic actor-critic model to obtain the planning model are the following ones:
• Predictor: a neural network that implements the model of the environment.
• Matcher: a neural network that is capable of deciding if the goal has been achieved or not

(either in the environment or in the simulated experience) and to generate a reward signal
accordingly.

• Action-planning controller: an algorithm that determines when to act and when to plan,
administers the flow of information between the different neural components that make
up the whole system, and directs the generation of simulated experience during planning.

Incidentally, notice that a fourth important component, that is not present in the model, would
be needed to have a fully autonomous robot. This component would have the function of
memorising the goals and of recalling them at the appropriate moment. For example if the

102

robot were engaged in a navigation task this component could allow the robot to memorise
“snapshot images” of relevant locations in space, e.g. locations where the robot has found
some resources important for its activity. At a later stage, when these resources are needed,
the robot should be capable of retrieving the image of the location where the resources are, so
that this position would become the goal position that it would try to reach. Notice that this is
a quite sophisticated function, difficult to implement.

When planning, the controller simulates experiences based on “simulated walks” of the
kind: “sensory input → action → prediction of new sensory input → action…”. The planning
process is a form of “forward planning”. In fact each simulated walk starts with the sensory
input corresponding to the current state and continues with the predicted input patterns
generated in a sequence. Each simulated walk terminates either when the goal is achieved
(within the simulated experience), or when the length of the simulated walk becomes longer
than a certain maximum length. This prevents the planning process from getting stuck in
unproductive loops and dead ends, and also focuses the search around the current state. As we
shall see, this maximum length is set at 1 when the planning process starts, and then is
increased by 1 unit each time that the simulated walk fails to reach the goal. This guarantees
that the search is progressively extended to states more distant from the current state.

It is important to briefly discuss the fact that the predictor's training has been
accomplished before the tests (incidentally, this is also done by the majority of works that
have implemented neural planning on the basis of the activation diffusion principle, cf. s.
4.5.1, and the planning systems based on gradient descent methods, cf. s. 4.5.2). This choice
has been made for two reasons. The first is that in this way it has been possible to show that
the forward planner is capable of implementing taskable planning. In fact it can reach any
goal assigned to it on the basis of the information contained in the predictor, without the need
to train again the model of the environment. The second reason is that model updating carried
out while acting would introduce other complex problems out of the scope of this research.

What is New and Related Work. The previous section has already highlighted some aspects
of the controller that are new (Baldassarre, 2001c). As mentioned the reactive components of
the controller presented in this chapter, are largely based on the actor-critic model
implemented with neural networks (Barto and Sutton, 1998) and analysed in chapter 6. The
idea of implementing planning as a form of learning within a model of the environment is
from Sutton (1990, “Dyna-PI” models, cf. s. 3.3; cf. also Barto et al., 1995, on trial-based
real-time asynchronous dynamic programming applied to path finding problems, cf. s.
13.2.11). It is important to stress that previous work using Dyna-PI architectures (e.g. Sutton
1990; Lin, 1992) has used it as a way to speed up learning, not to implement genuine taskable
planning. The reason was that a device like the matcher was needed to implement planning.
The idea of the matcher is new, but it has been inspired by the idea of “goal test” used in
problem solving and planning (cf. s. 2.1 and 2.3). The idea of generating simulated
experiences on the basis of the current policy, called “trajectory sampling”, was investigated
by Barto et al. (1995) and Sutton and Barto (1998, p. 247; cf. s. 3.4 for a review). The idea of
increasing the depth of the path generated during planning resembles an iterative deepening
search (Korf, 1985a, cf. s. 13.1.1), but it is new because it has been developed for the
application to problems with stochastic actions' effects. The planning algorithm controlling
the flow of information between the components of the model, and the use of the predictor to
generate “simulated walks”, are new. The idea of implementing the predictor (model of the
environment) with a feed-forward neural network trained with experience has already been
applied by Lin (1992) and Nolfi and Tani (1999) (see other examples in s. 4.5.2). Notice that
all these works use deterministic neural networks to implement a model of an environment

103

that is actually stochastic. This simplification is also used here (see below). An alternative
approach would have been to use stochastic networks, such as the feed-forward stochastic
networks proposed by Neal (1995; 1996). This idea has not been tested here. As we shall see,
the predictor is trained while the simulated robot navigates randomly in the environment. A
random navigation has been used to mimic the way an unsophisticated autonomous robot
would navigate in the absence of any previous knowledge. More sophisticated ways of
exploring the environment to improve model building have been proposed (e.g. cf. Duckett
and Nehmzow, 1999; Schmidhuber, 1999). These are not tested here. The idea of using
“expert” networks for the predictor, each specialised to predict the consequences of a specific
action, has been used in Lin and Mitchell (1992).

Chapter's Outline. S. 8.2 presents the task used to test the controller. S. 8.3 presents the
architecture of the system and in particular the planning components and the algorithm that
manages planning and decides when to plan and to act. S. 8.4.1 shows that the neural planner
presented here is taskable. S. 8.4.2 shows how information gained with simulated and real
experience merges nicely within the policy. S. 8.4.3 analyses the details of how the predictor
works. Finally s. 8.5 highlights the drawback of the controller and s. 8.6 draws the
conclusions.

8.2 Scenario of the Simulations

The simulated scenario and robot used to test the controller presented later are the ones
illustrated in s. 6.2. For convenience, Figure 8.1 reports the scenario and the goals that the
simulated robot has to pursue.

Figure 8.1: Left: the simulations' scenario containing the three goals (stars), five landmarks (black
circles), the scope of the simulated robot's 50 visual sensors (delimited by the rays), the simulated

robot at the start position (white circle). Right, in order from the top: the activation of the simulated
robot's sensors at the start, the corresponding contrasts, the three goals (as contrasts relative to the

images viewed from the goal positions).

104

8.3 Architectures and Algorithms: Reactive and Planning Components

This section will first analyse the differences between the reactive components of the
controller presented here, and those of the controllers presented in the previous chapters. Then
it will analyse the components added to them to obtain the neural forward planner.

8.3.1 The Reactive Components of the Architecture

Figure 8.2 shows both the reinforcement learning and the planning components of the
simulated robot's neural controller. A description of the reinforcement-learning components is
now given. This part of the model is the same as the one reported in s. 6.3, and in particular in
Figure 6.3 (Figure 8.2 represents each neural network as a box that does not shows the
internal details about the single units and connections as Figure 8.2 does).

Figure 8.2: The controller of the simulated robot. Networks with a bold and thin border implement
reinforcement learning and planning respectively. Arcs and arrows respectively indicate forward and
backward connections that “copy” a pattern from one layer to another. The four and five spike stars

respectively indicate the channels set open or close by the action-planning controller when acting (vice
versa when planning). Dashed arrays indicate the learning signal used to update the weights of the

evaluator and actor.

As previously, the actor selects the actions in a stochastic fashion, and the evaluator

evaluates the states of the world in terms of expected future rewards, on the basis of the
current actor's action-selection policy. The evaluator improves the quality of the evaluations
by experiencing the rewards through a supervised learning algorithm. The actor improves the
action-selection policy by increasing the probabilities of those actions that bring it to states
with an evaluation higher than the one expected by the critic. So, as previously, the controller
is perfectly capable of learning by a trial-and-error process. However now, as we shall see
below, when the controller is planning the same evaluator and actor are also trained through
pseudo-experience generated by using the “predictor”. When this happens, the evaluator and
actor function in the same way as they do when they are trained through real experience. They
treat the two kinds of experience in identical way. If the model of the world is accurate
enough, the effect of training with simulated experience while planning is that the
performance of the controller in the world improves.

Matcher

100 100

Evaluator

100

Predictor

8 100

Actor

100

Stoch. selec.

8

100
50

100

50

Goal
Contrasts

Input

Learning
signal

Action-planning controller

TD-Critic

105

8.3.2 The Planning Components of the Architecture

Now the components added to the reactive-learning model to obtain the planning controller
are explained. The “predictor”, i.e. the controller's model of the environment, is a set of 8
feed-forward two-layer networks (“experts”) with sigmoidal output units, each corresponding
to one action. Each expert takes yt as input, and is specialised to predict the following sensors'
activation xt+1 if the action corresponding to it is executed. To this purpose the output of each
sigmoidal unit of the expert selected is set at 0 if below 0.5, and at 1 if above, in order to
obtain a binary pattern. A hand-designed algorithm chooses the expert corresponding to the
selected action to yield the output of the predictor itself. This algorithm could be easily
implemented with neural networks: the activation of the selected action's unit could be used to
inhibit the activation of all the units of the experts different from the expert corresponding to
the selected action. However this would not produce any substantial insight.

The experts are trained while the simulated robot navigates randomly in the environment
for 200,000 cycles. This training brings the quadratic error per unit to about 0.24 (the
“quadratic error” is computed as the square root of the average of the squared error per unit).
The training is done before the main simulations illustrated later, and then the experts are used
unchanged for all the simulations. At each cycle the contrast pattern yt and the input pattern
xt+1 observed after the execution of one action, are respectively used as input and teaching
output to train the expert corresponding to the action with a Widow-Hoff rule (Widow and
Hoff, 1960; cf. s. 13.3.1). Notice that, because of its architecture, the predictor yields
deterministic predictions that tend to be the average of the xt+1 observed after each yt. This is
clearly a simplification since a correct model of the environment that is stochastic should
yield stochastic predictions.

It is important to explain why one expert for each action has been used instead of one
monolithic neural network with current state and current action as input and predicted next
input as output. At the beginning of the research, some exploratory simulations have been run
with the monolithic network (a three-layer feed-forward neural network trained with the error
backpropagation algorithm) and the results have been poor. They can be summarised as
follows. The behaviour of the predictor has the strong tendency to get stuck in a behavioural
local minimum for which the current state of the input is repeated as output. The reason is
that, with the sizes of the simulated robot's movement used to implement the actions (e.g. the
“go_to_north” action), the next input is identical to the current input with the exception of few
bits. These few bits are not always the same even for the same action (selected at the same
state) as noise affects the consequences of it. As a result, the predictor tends to treat the bits
common to the current input and the next input as the actual input-output pattern association
to learn, and the differences between them, caused by the different actions selected, as noise.
The use of one expert for each action greatly facilitates the training of the predictor as the
different bits between each “current input” and its next input tends to be consistent in time,
since the same action is always selected in correspondence to a given expert (cf. Lin and
Mitchell, 1992, on the “one action one network principle” according to which in
reinforcement learning it is usually advantageous to use one neural network for each action).

The controller can be either in planning or acting mode. The action-planning controller is
a hand-designed algorithm whose pseudo-code is showed in Figure 8.3. The action-planning
controller decides when planning and when acting and directs the flows of information
between the different networks of the architecture. Here, first an overview of the functioning
of the action-planning controller is given, and then a detailed explanation of it is presented.
The action-planning controller decides the controller's mode on the basis of its “confidence”.
The confidence is defined as the highest of the actions' probabilities measured at the position

106

currently occupied by the simulated robot. If the confidence is above a certain threshold the
controller acts in the world and the predictor is not used.

01 IF(NewGoalHasBeenAssigned)
02 MaxStepsPlan := 1
03 ConfThresh := MaxConfThresh
04 StepPlan := 0
05 InputFromWorld := TRUE
06 IF(InputFromWorld)
07 System gets input x

t
 (y

t
) from the robot’s sensors

08 Actor gets y
t
 and gives m

t

09 Confidence is computed on the basis of m
t

10 IF(Confidence < ConfThresh)
11 Planning := TRUE
12 ELSE
13 Planning := FALSE
14 ConfThresh := MIN(MaxConfThresh, ConfThresh + Gain)
15 IF(Planning)
16 StepPlan := StepPlan + 1
17 ConfThresh := ConfThresh - Decay
18 IF(InputFromWorld = FALSE)
19 System uses predictor’s output y

t
 as input

20 InputFromWorld := FALSE
21 IF(GoalReached OR StepPlan = MaxStepsPlan)
22 IF(StepPlan = MaxStepsPlan)
23 MaxStepsPlan := MaxStepsPlan + 1
24 ELSE
25 MaxStepsPlan := MIN(MaxStepsPlan, StepPlan * 2)
26 InputFromWorld := TRUE
27 StepPlan := 0
28 Evaluator gets y

t
 and gives V'π[y

t
]

29 Actor gets y
t
 and gives m

t

30 Stochastic selector gets m
t
 and gives a

t

31 Matcher gets y
g
, y

t
 and gives r

t

32 TD-Critic gets V'π[y
t-1
], V'π[y

t
], r

t
 and gives e

t-1

33 Evaluator gets y
t-1
, e

t-1
 and learns

34 Actor gets y
t-1
, m

t-1
, a

t-1
, e

t-1
 and learns

35 IF(Planning)
36 Predictor gets y

t
, a

t
 and gives x

t+1
 (y

t+1
)

37 ELSE
38 System executes a

t
 in the environment

Figure 8.3: Pseudo-code of the action-planning controller. This code is executed at each cycle after the
activation of the actor. “:=“ is the assignment operator. In the simulations these parameter settings

have been used: Decay = 0.00001, Gain = 0.01, MaxConfThresh = 0.15.

If the confidence is below the threshold, the action-planning controller disconnects the

robot from the world, in the sense that it generates simulated experience by using the
predictor and the matcher to simulate experience (see Figure 8.4). In particular the action-
planning controller uses the predictor to generate several “simulated walks”, i.e. chains of
predictions (images). Each simulated walk starts from the image that corresponds to the
position occupied in the environment. Simulated walks tend to be different since the actor
selects the actions stochastically. Simulated walks get gradually longer if the goal is not
encountered, otherwise they tend to get shorter (see details below). While planning the
confidence threshold decreases. This prevents the robot from getting stuck in places in which
the controller is not capable of becoming “confident” enough to start to move. For example, in

107

some simulations where the threshold was kept fixed, the simulated robot got stuck between
the arena's border and the upper-left obstacle. While acting, the threshold increases again and
reaches the maximum level without exceeding it. This guarantees that the robot tends to move
only when the confidence is above the maximum level of the threshold. If the threshold could
only decrease, the simulated robot would tend not to plan anymore. When the simulated walks
are generated, the actor and the critic are trained as if the robot were acting in the
environment. This allows the evaluator to improve its evaluating capacity and the actor to
become capable of reaching the goal when the robot starts to act.

Figure 8.4: This sequence of graphs gives a general idea of the nature of the simulated walks (thin
broken lines) generated by the action-planning controller from the current position. The simulated

walks get longer until they start to encounter the goal. When this happens, their length tends to
stabilise. Initially the simulated walks are directed in every direction, while after some time they

become oriented from the start to the goal due to the training of the actor and critic. When the
confidence measured in correspondence to the image of the position currently occupied by the robot

reaches the threshold, the robot starts to act (not shown in the graphs).

Now the pseudo-code illustrated in Figure 8.3 is explained in detail. At the beginning of

the simulation, when a new goal is assigned to the simulated robot, the variable
NewGoalHasBeenAssigned is TRUE, and the algorithm does some variable settings (line
1 to 5). The whole algorithm is executed at each cycle of the simulation. This implies the
execution of either one cycle of action or one cycle of planning depending on the system’s
mode (planning or acting mode). The mode (variable Planning) is decided each time the
system receives an input from the world (line 6 and 7) on the basis of the system’s
“confidence” (line 8 to 13). The confidence is defined as the highest of the actions’
probabilities measured at the position currently occupied by the simulated robot. If the
confidence is above a certain threshold the system acts in the world and the predictor is not
used (line 38). If the confidence is below the threshold, the action-planning controller
“disconnects” the robot from the world (line 10, 11, 15 and 20), in the sense that it starts to
generate simulated experience by using the predictor and the matcher (in line 36 the predictor
produces one of the predictions that make up the chain of predictions, and in line 31 the

108

matcher checks if the chain encounters the goal). Each chain of predictions starts from the
image that corresponds to the position currently occupied by the simulated robot. In fact when
the variable Planning is set at true (line 11), xt and yt come from the simulated robot’s
sensors (line 6, 7). Notice that chains tend to be different since the system selects actions
stochastically (line 29 and 30). Prediction chains get gradually longer if the goal is not
encountered (line 2, 22 and 23), otherwise they tend to get shorter (line 25). While planning,
the confidence threshold decreases (line 17). This prevents the robot from getting stuck in
places in which the system is incapable of becoming “confident” enough to start to move (for
example, without this mechanism the simulated robot got stuck between the arena’s border
and the northwest landmark). While acting, the threshold increases again and reaches the
maximum level without exceeding it (line 14). This guarantees that the simulated robot tends
to move only when the confidence is above the maximum level of the threshold. In the
simulations the parameters of the algorithm are set as follows: Decay = 0.000001, Gain =
0.01, MaxConfThresh = 0.15. Each time a chain of prediction is terminated (either because
the goal has been encountered or because it has reached a maximum length, line 21) the
system “connects” again to the sensors and effectors (line 26, 6 and 7), updates the mode (line
8 to 13), and starts to act or to generate another chain of predictions. While the simulated
walks are generated, the actor and the evaluator are trained with reinforcement learning as if
the robot were acting in the world (line 28 to 34). This allows the evaluator to improve its
evaluating capacity and the actor to shape the action probabilities. When the system stops
planning and acts in the world (line 10, 13 and 38) it reaches the goal following a path that
tends to be straight.

8.4 Results and Interpretation

8.4.1 Taskable Planning vs. Reactive Behaviour

The first two simulations have been run to test the taskability of the planning controller. This
has been done by comparing the performance of the planning controller with the performance
of the controller with reactive components only. During a simulation the simulated robot is set
at the start, and its task is to reach the northwest goal. Each time the simulated robot reaches
the goal it is set at another randomly-drawn position of the arena. This is done for 50,000
cycles. Then the simulated robot is set again at the start and is assigned the northeast goal,
pursued for 50,000 cycles with the same modalities (random start after each success). The
same is done for the southwest goal. Each time a new goal is assigned to the simulated robot,
the weights of the evaluator and actor are randomised in the interval [-0.001, +0.001] so they
can be used for the new goal.

Figure 8.5 reports the results of these simulations (averaged over 10 random seeds). For
both the reactive and planning controllers the number of actions taken to reach the goal has
been measured and plotted against the cumulated simulation cycles (this measure has been
sampled every 100 cycles, and then smoothed with a 10-step moving average). Each cycle
reported in the graph implies the execution of one action and eventually, if the controller is
planning, several planning cycles. In the case of planning the number of planning cycles per
action has also been measured and plotted in the graphs.

Several facts emerge from these simulations. When a new goal is assigned to the reactive
controller, it reaches it in about 2000 steps on average (this approximately corresponds to the
performance of a controller yielding a random walk). After repeated trials the reactive
controller learns to reach the target in fewer steps, about 40 on the average, from any position

109

of the arena (the optimal path, not considering noise and obstacles, is about 10-15 steps long
on the average). This same pattern is repeated for the three goals assigned to the reactive
controller in a sequence. The standard deviation of the performance over the 10 simulations
run with different random seeds is quite high (see graph).

Figure 8.5: Top: Performance (y-axis: sampled every 100 cycles, and then smoothed with a 10-step
moving average) for the three goals of the learning controller and planning controller, against the

cumulated cycles (x-axis). “action” = steps per success; “action (plan)” = steps per success; “plan” =
planning cycles per success. Each plot is an average over 10 simulations run with different random

seeds. Bottom: average performance, average performance minus the standard deviation and average
performance plus the standard deviation of the learning controller (left) and planning controller (right)

for the northwest goal.

When a new goal is assigned to the planning controller, it reaches it in about 200 steps

from the very first time it pursues the goal. This result is achieved through a considerable
amount of planning processing: the planning cycles that the controller spends planning before
reaching the goal the first time (averaged over 10 random seeds) are 62,004 40,116 and
17,840 for the northwest, northeast, southwest goals respectively. During this planning
activity the skills of the evaluator and actor improve so that when the controller decides to act
in the world it can achieve the goal with a performance superior to the performance of the
reactive controller (random walk). If the confidence threshold is set at a higher value, 0.25,
the performance of the planning controller is even better: it takes about 50 steps to reach the
goal (see Figure 8.6). The standard deviation of the performance over the 10 simulations run
with different random seeds is quite low (see Figure 8.5). This implies that planning not only

0
100
200
300
400
500
600
700
800
900

1000
1100
1200
1300
1400
1500
1600
1700
1800
1900
2000

0 25000 50000 75000 100000 125000 150000

action
action (plan)
plan

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0 25000 50000

average
average-stdev
average+stdev

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0 25000 50000

average
average-stdev
average+stdev

110

improves the performance on the average, but also drastically improves the consistency of
success.

The number of planning cycles required by the north-west goal for the first success
(62,004) is high in comparison to the cycles required by the other two goals because the
north-west goal is more distant from the start. The difference of planning cycles between the
other two goals (40,116 and 17,840) is probably caused by the configuration of the
landmarks/obstacles and the functioning of the model of the environment for different areas of
the environment. The fact that, for all the three goals, so many planning cycles are required is
discussed in s. 8.5.

Figure 8.6: Left: Positions occupied by the simulated robot the first time that it reaches the northeast
goal by reinforcement learning. Right: positions occupied by the simulated robot the first time that it
reaches the northeast goal by planning. In this particular experiment the confidence threshold was set

at a higher value than in the other experiments (0.25) to stress the fact that since the first time the robot
reaches the goal it follows a quite efficient and straight path.

The difference of the performance of the reactive controller and planning controllers is

particularly relevant because it shows that the planning controller is taskable. If fact: (a) it
reaches the goal only on the basis of the information about the goal (plus the information
stored in the predictor, i.e. the model of the world); (b) it is more efficient than the
corresponding reactive controller from the first time the goal is pursued (cf. s. 5.1).

It is interesting to frame the results in terms of the formalism introduced in s. 3.1. The
planning controller is capable of building the mapping S × A → [0, 1] relative to the
particular goal pursued, without reaching the goal. Moreover the controller solves the more
complex mapping S × A × Sg → [0, 1] dynamically, i.e. for the particular goal assigned, by
using the small memory capacity of the evaluator and actor's weights. On the other hand, the
reactive controller can solve the S × A → [0, 1] mapping problem only at the cost of repeated
experience of the goal itself. This is also true when the reactive controller has to solve the S ×
A × Sg → [0, 1] mapping problem (chapter 7 has shown how a modular architecture can
improve the learning speed of the system).

Some caveats are needed to qualify these results. First, the planning controller has storage
capacity (weights of the predictor) that could be used to increase the storage capacity of the
reactive controller's actor and critic. Second, the acquisition of a good model of the
environment requires experience that could be used to learn to reach specific goals.
Notwithstanding these caveats, an important fact remains true: the planning controller is

111

capable of storing information in the predictor that is independent of the specific goal
pursued, and this information can be flexibly used for any goal. This is not true of the reactive
controller.

8.4.2 Focussing, Partial Policies and Replanning

Direct observation of the behaviour of the simulated robot makes it possible to understand
how the controller works in terms of partial policies and replanning. As mentioned, when
assigned a goal the planning controller spends many cycles planning before reaching it. After
some time it begins to act. Two behaviours have been observed:
• Sometimes when the simulated robot starts to act, it reaches the goal along a quite

straight path without ever stopping to plan again.
• Some other times, when the simulated robot starts to act, it arrives in some states where

the confidence is low. For example, sometimes it goes right past the goal, or ends up in
states far from the direct start-goal path. In these cases the simulated robot stops and the
controller starts to plan again.

These two behaviours are interesting because:
• The first behaviour shows that when the confidence at the start reaches the threshold, the

confidence for the states closer to the goal and along the direct start-goal path is also
higher than the threshold (indicated by the fact that the simulated robot does not stop to
re-plan). This can be explained by observing that reinforcement learning works by
updating the evaluations (and hence the actions' probabilities) from the goal backwards
towards other states. The resulting behaviour is desirable because it avoids the controller
planning, executing one action, re-planning, executing another action, etc.; i.e. it assures
that the partial policy prepared at the beginning allow the simulated robot to reach the
goal with high probability. This probability can be set indirectly by setting the maximum
confidence threshold.

• The second behaviour shows that the policy prepared is really a partial policy. In fact if
the simulated robot reaches “unexpected” states it starts to re-plan. Another result
confirms that the policy is partial and focussed on the goal and the current start. When the
simulated robot reaches the goal, it is set at a new position of the environment chosen at
random. When this happens, the controller always starts to re-plan (except when it is set
along the old direct start-goal path). This shows that the old policy is not adequate for
states that lie far away from the old direct start-goal path, i.e. that the old policy was
actually a partial policy. It should be noticed that this property of the planner descends
from the fact that reinforcement learning methods are being used to implement planning.

With repeated experience the planning controller shows two other relevant changes in
behaviour. First, the amount of planning needed to reach the goal decreases sharply with
experience, and soon falls to zero. This happens because the outcome of the planning process
is stored (“compiled”) in the weights of the evaluator and actor, so that the reactive
components of the controller become “confident” enough to reach the goal without further
planning. This shows how the controller is capable of finding a balance between acting and
planning. Second, experience in the world further improves the performance, bringing it from
about 200 to about 50 steps. This means that the outcomes of the simulated and real
experience merge suitably in the weights of the evaluator and actor. This is a typical property
of Dyna-like architectures.

8.4.3 Neural Networks for Prediction: “True” Images as Attractors?

The predictor incorporates the state transition-function part of the model of the environment.
This is a critical component of the controller because the whole process of planning relies on
it, so it is important to analyse how it works. This is done in this section.

Figure 8.7: The graphs on the left report two ex
northwest goal (top left graphs) and to the northea

been kept fixed to northwest and north respective
output of the predictor (left part of the graphs o

graphs on the left), and the selected action (column
succession of the images is reported from the top
corresponds to the image that the simulated robot
world, while the other images are generated throu
true images perceived by the robot while it moves

to the north east goal (top right graph) respectively

NW
NW

e

e

c

a

NW
NW
NW
NW
NW
NW
NW
NW
NW
NW
NW
NW
NW
NW
NW
NW

1

am
st g
ly

n th
s o
to t
 pe
gh
 fro
. Th

b

c

NW
NW
NW
NW
NW
NW
NW
NW
NW
NW
NW

N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
d

d

f

c

12

ples of simulated walks from the start to the
oal (bottom left graphs). The action selected has
for the two goals. For each step the continuous
e left), the binary prediction (right part of the
f letters of the graphs on the left) are shown. The
he bottom of the graphs. The first binary image
rceives at the position currently occupied in the
the predictor. The graphs on the right report the
m the start to the northwest (top left graph) and
ey have been reported to allow the evaluation of

N
N
N
N
N
N
N
N
N

113

the quality of the simulated walks generated by the predictor. Notice that they have been stretched to
have a better correspondence with the simulated walks: this means that the simulated walks tend to be
made up by more steps than the real walks. Notice that the predictor is capable of coping with noise (a:

an activation that is generated by noise and not by a landmark, is suppressed after some time), is
capable of predicting the appearance of landmarks in the scene (b), is capable of predicting the

appearance of a landmarks form behind other landmarks (c) and the disappearance of landmarks
behind other landmarks (d); however, the predictor also produces distorted images, for example it

generates non-existing landmarks (e), has the tendency to generate persistent landmarks in the centre
of the scene (f: this happens because the stability of a landmark’s image in the middle of the scene

when the simulated robot approaches it is a very strong regularity), has biases (in the first example the
simulated walk leads to the left of the northeast landmark, while the simulated walk leads towards it;
in the second example the simulated walk leads further away from the north east landmark compared
to the real walk), tends to generate images that change more slowly than real images (as mentioned,

the number of real images on the right are less than images generated by the predictor).

The behaviour of the predictor can be understood by investigating the nature of the

predictions that it generates while planning. Figure 8.7 shows the simulated walks generated
by the planning controller. The simulated robot begins to move at the start. The “selected”
action has been fixed to northwest (or north for the second graph shown in the figure) by
suitably changing the simulation program. A sequence of 29 successive predictions has been
recorded for both cases and plotted in the figure. A good capacity of the predictor to anticipate
the consequences of the actions is apparent from the graphs. For example the predictor is
capable of coping with noise, is capable of anticipating the appearance of landmarks from
behind other landmarks, or the disappearance of them. To check this, consider the graphs
reported on the right of the figure: they report the images perceived by the simulated robot
while it moves toward northeast or north (alternatively consider Figure 8.1 and consider how
the landmarks should appear to the simulated robot while it moves along a straight path that
goes from the start to the northwest or the north goal). The predictor also makes some
mistakes (that, incidentally, are quite interesting). For example it has biases, e.g. it tends to
keep fixed images of landmarks in the middle of the scene because this is a strong regularity
observed in the environment, it “loses” the image of some landmarks and predicts to see non-
existing landmarks.

To collect other data on the predictor's behaviour, a simulation where the simulated robot
selects the actions autonomously has been run. Figure 8.8 reports these data. The simulated
robot guided by the planning controller was set at the centre of the arena and had to plan to go
to the northwest goal. The confidence threshold was set at a high value (1) so that the
controller kept planning without ever moving. After 200,000 cycles of planning the
predictions starting from the current real visual input (i.e. the one corresponding to the centre
of the arena) were recorded until the goal was “mentally” reached. The two graphs reported in
the figure refer to two runs of the experiment that differ in the starting image because of
perception noise. These and other runs show the coherence of the simulated walks generated
by the predictor. For example notice that in the bottom graph of the picture, the image of a
wrongly “lost” landmark (the one at the northwest corner, cf. Figure 8.1) is recovered (you
can see this by comparing the two graphs). The same type of simulations also show mental
walks that fail to reach the goal, for example because they converge to images that do not
correspond to positions in the environment.

The predictor's capacity to generate images that approximately correspond to real
situations for 29 succeeding steps is quite surprising. In fact one would expect that noise
would accumulate when some noise predictions are used as input patterns to generate further
images. Instead, it seems that there is a mechanism that keeps this noise under control. A

hypothesis can be formulated about this mechanism. The images that correspond to real
situations tend to be “attractors” for the images of the simulated walk generated by the
predictor, with “basins” of attraction that capture the “noisy” images. Notice that here these
concepts are used because they facilitate the description of the results of the experiments, but
are not intended in a rigorous technical sense (e.g. cf. Wuensche, 1998, for a rigorous
definition and use of these concepts). This property of the predictor depends on the fact that it
is trained in the environment, and on the neural networks' property of prototype extraction (cf.
s. 4.4.2). In fact when the predictor is trained, the images used as input and teaching output
are the ones that correspond to real views of the environment. As a consequence of this and
the prototype extraction property, even when some images corrupted by noise are sent to the
predictor as input, the output will tend to be an image that corresponds to a real view and the
noise will tend to be filtered out.

Figure 8.8: The graphs on the left repo
successful simulated walk that starts fr
two examples differ in the initial imag
output of the predictor, the binary pre

right show the images of the environme
the arena to the northwest goal followin

SW
NW
W
N
NW
NE
NW
NW
SE
N
SE
NW
NW
NE
SW
E
SW
NW
SW
N
N

NW
SW a

NE
W
W
NW
NW
SW
NE
NE
NE
NE
NW
NW
NW
NW
NW
E
SW
b
114

rt two examples (recorded after 200,000 planning cycles) of a
om the centre of the arena and ends in the northwest goal. The
e because of the sensors' noise. For each step the continuous

diction, and the selected action are shown. The graphs on the
nt perceived by a simulated robot that goes from the centre of
g a straight line. Notice how a landmark lost in a is recovered

in b.

N
SW
N
N

115

If true, this would be a fundamental mechanism to preserve the correspondence of the
predicted images with positions in the environment. Further investigation is needed to test this
explanation and to study ways of avoiding spurious attractors.

8.5 Limitations of the Neural Forward Planner

The functioning of the planner depends on the possibility of building a reliable model of the
environment. In fact first the predictor is suitably trained, then planning starts on the basis of
the assumption that the model of the world is sufficiently accurate and that training the
evaluator and actor through it will improve their abilities to evaluate and act. This assumption
is not true in general for all task domains. Moreover, one might want that planning start in any
moment of the “life” of the agent, so the planner should be capable of evaluating the quality
of its predictions and deciding if planning or not accordingly. This drawback of the planner
also affects all the planners presented in the following chapters and the planners reviewed in
s. 4.5.

The controller presented in this chapter has some limitations. One is that the first reaching
of the goal within the model of the environment is achieved as the result of a random-walk
search. This is very inefficient (cf. s. 8.4.1). Given that the goal and the model of the
environment are known it should be possible to carry out a goal-oriented search. This will be
done in chapter 9.

There is another limitation connected with the previous one. The current controller
predicts and plans at the same level where it acts, i.e. at the level of the “primitive-actions”
available to the controller. At this level of detail it is possible that the model of the
environment cannot be accurate enough because the environment is intrinsically
unpredictable. A solution would be to plan at a coarse level, where details are ignored, and to
act at a fine level. In fact, abstraction can allow a better prediction (cf. Russell and Norvig,
1998, p. 409). How would it be possible to implement this kind of “coarse planning”? The
thesis starts to tackle this problem in chapter 11.

8.6 Conclusion

This chapter has presented a neural network controller (“neural forward planner”) that is
inspired by Dyna-PI architectures, but that, unlike them, is taskable. It has achieved this result
by introducing the “matcher”, a new neural network for goal detection. This has eliminated
the need, present in the original Dyna-PI architecture, for the part of the model of the
environment related to the reward. The simulations have shown that taskability allows the
planning controller to reach the goal in fewer steps than the underlying reactive controller
from the first time the goal is pursued. This is one of the real advantages of planning
controllers vs. reactive controllers.

Planning is executed by using the knowledge stored in a modular network, the
“predictor”. The predictor models the effects produced by the actions when they are executed
in the environment. When the controller is planning, the predictor is used to generate
sequences of future states starting from the current state (trajectory sampling, cf. s. 3.4).
During planning these sequences are generated iteratively and have a length that is increased
if the goal is not encountered, and is decreased when it is encountered. This planning strategy
allows the system to focus planning on states concentrated around the start-goal path, and to
build partial policies.

116

The experiments have also shown how the controller not only builds partial policies, but
also uses re-planning when necessary. In particular they have shown that when the controller
encounters relatively novel states it executes planning, while when it encounters relatively
familiar states it acts reactively. This also implies that after the controller has enough
experience about one goal it does not need to plan anymore.

The planning processes use representations consisting of “images” generated by the
predictor and learnt autonomously. Some simulations have shown that the predictor has a
significant capacity to maintain the consistency between the simulated trajectories generated
and the possible trajectories experienced in the world when the policy is executed. A possible
explanation of this is that images that correspond to views of the environment are “attractors”
for the images generated by the predictor.

The experiments have also demonstrated some limitations of the controller, such as the
need to assume the accurateness of the model of the world when planning is executed, and the
large number of planning cycles needed to reach the goal the first time due to the fact that the
initial search is carried out on the basis of a random walk. They have also shown that planning
takes place at the same fine level of actions, and hence it is not very efficient.

117

9 The Neural Bidirectional Planner

9.1 Introduction: More Efficient Exploration

Problems Tackled. The problem addressed by this chapter is how to further focus planning
on relevant regions of the state space within the model of the environment. The planning
controller presented in chapter 8 executed forward “simulated walks” within the model of the
environment. These simulated walks started from the image of the position currently occupied
by the simulated robot and tried to reach the goal within the model of the environment. This
controller had a basic problem shared with reinforcement learning methods and Dyna
architectures in general: the first time that the goal was pursued the controller tried to reach
the goal on the basis of a random walk. With large state spaces this random walk encountered
the goal rarely, hence the whole process of planning was very slow. The controller proposed
and implemented in this chapter tries to solve this problem.

Overview. The controller proposed here implements planning by generating simulated
experience both forward from the current state and backward from the goal. The simulated
forward walks are as the ones executed by the forward planner of chapter 8. The simulated
“backward walks” are based on two new neural components, the back-actor and the back-
predictor, respectively capable of “guessing which action could have brought to the current
state” and of “guessing what was the state from which the system has reached the current
state”. The simulated backward walks start from the goal and explore other states from it in all
the directions (as we shall see, the controller learns to “escape” in straight lines from the
goal). While this is done, the evaluations, the policy, and the “back-policy” are updated. The
backward walks produce two important advantages when compared to the forward walks:
• An efficient exploration of the model of the environment: the goal is “found”

immediately, given that the backward walks start from it.
• A quick propagation of the evaluations backward from the goal, given that the evaluation

of each state is updated on the basis of an evaluation of a state that has just been updated.
The simulations will also show that the bidirectional planner has the strengths of the forward
planner of chapter 8. First, it is taskable and it is even more “goal-oriented” because the
planning activity focuses around the goal. Second, it is capable of transferring skills between
problems with same goal and different starts. Third, when it solves a problem several times it
is capable of accumulating “skills” within the reactive components so that planning is no
longer necessary.

What is New and Related Literature. The general idea of planning backward from the goal
is not new. Literature on problem solving has already showed the advantages of searching
forward from the start and backward from the goal by studying “bidirectional search” (Pohl,
1971; cf. s. 13.1.1). STRIPS planning (Fikes and Nilsson, 1971; cf. s. 2.3) is completely based
on backward searches from the goal. However, the specific mechanisms that have been
proposed by these two branches of research are not applicable to stochastic environments such
as the ones considered here.

118

The idea of the backward updating of the evaluations has also been investigated within
the reinforcement learning literature. In particular Lin (1992), Thrun (1992), Reynolds (2002),
have shown how updating evaluations backward from goal is a powerful strategy because
state-evaluations are updated on the basis of evaluations updated in the previous time steps.
However, the systems proposed by these authors use memory structures to store sequences of
states that led to the goal, or other type of experiences, in order to use them for iterated
“backward” backups. If one wants to use neural networks, this strategy would raise the
problem of how implementing these memory structures and how using the information stored
in them. Prioritised sweeping (Moore and Atkenson, 1993; Wiering et al., 1998; Dearden,
2001; cf. s. 3.4), by updating states or state variables whose evaluations would change a lot if
updated, often propagates evaluations backwards from states close to the goal.

Chapter's Outline. S. 9.2 presents the task used to test the controller. S. 9.3 presents the
details of the components of the bidirectional planner. S. 9.4.1 shows that the backward
planner has the same strengths of the forward planner. S. 0 shows the advantages of the
bidirectional planner vs. the forward planner in terms of exploration and propagation of
evaluations. Finally s. 9.5, 9.6 and 9.7 respectively analyse the drawbacks of the models,
propose a controller simpler than the bidirectional planner, and draw conclusions.

9.2 Scenario of Simulations

The scenario and the simulated robot used in this chapter are the ones illustrated in s. 6.2 (cf.
Figure 6.2). Figure 9.1 shows the scenario and the particular goal and start positions used in
this chapter.

Figure 9.1: Left: The scenario of test containing the goal (star), five landmarks (black circles), the
scope of the simulated robot's 50 visual sensors (delimited by the rays), the simulated robot (circle at
origin or rays), and the 12 start positions (white circles) at which the simulated robot is repeatedly set

in ordered succession. Right, in order: The activation of the simulated robot's sensors at its current
position (affected by noise), the corresponding contrasts, and the goal (contrasts).

The task the simulated robot has to accomplish is to reach the goal position from the start

position at the northwest corner. All the 12 start positions are used, from the one at the
northwest corner to the one at the south east corner. When the last start position at the
southeast corner has been used, the whole cycle is repeated starting from the start position at

119

the northwest corner. The particular start states have been chosen to guarantee the same
distance from the goal. This was important for the measurements reported below.

9.3 Architectures and Algorithms

9.3.1 The Reactive Components of the Architecture

Figure 9.2 shows both the reinforcement learning and the planning components of the
architecture. The reactive components of the controller have the same architecture and
function as the components of the forward planner presented in chapter 8.

Figure 9.2: The controller of the simulated robot. Networks with a bold, thin and dashed border
implement reinforcement learning, forward planning, and backward planning respectively. Arcs and
arrows indicate forward and backward connections respectively. They “copy” an activation pattern

from one layer to another. The four and five spike stars indicate the channels respectively set open and
close by the action-planning controller when acting (vice versa when planning). Dashed arrays
indicate the learning signal used to update the weights of the evaluator, actor and back-actor.

9.3.2 The Planning Components of the Architecture: Forward Planning

The predictor, that allows “forward planning”, is the same as the one employed in chapter 8.
Recall that it is a set of 8 feed-forward two-layer networks (“experts”) with sigmoid output
units, each corresponding to one action. Each expert takes yt as input, and is specialised to
predict the following sensors' activation xt+1 if the action corresponding to it is executed. The
experts are trained while the simulated robot navigates randomly in the environment for
200,000 cycles. This training is done before the main simulations illustrated below take place.

The action-planning controller is a hand-designed algorithm that decides when the
controller has to plan or to act, directs the flow of information among the different
components of the whole system, and manages the generation of the forward and backward

Matcher

100 100

Evaluator

100

Predictor

8 100

Actor

100

Stoc. sele.

8

100 50

100

50

Goal

Contrasts

Input

Learning
signal

Action-planning controller

TD-Critic

Back-
Predictor

8 100

Back-Actor

100

Stoc. sele.

8

50

120

simulated walks. The pseudo-code of this algorithm is illustrated in Figure 8.3. The main
differences between this algorithm and the one employed in chapter 8 are as follows:
• When the controller is planning, it has to decide when to execute forward planning and

when to execute backward planning.
• It has to control the flow of information between the different components of the system

when the controller is executing backward planning.

01 IF(NewGoalHasBeenAssigned)
02 MaxStepsPlan := 1
03 ConfThresh := MaxConfThresh
04 ForwardPlanning := TRUE
05 StepPlan := 0
06 InputFromWorld := TRUE
07 IF(InputFromWorld)
08 System gets input x

t
 (y

t
) from the robot’s sensors

09 Actor gets y
t
 and gives m

t

10 Confidence is computed on the basis of m
t

11 IF(Confidence < ConfThresh)
12 Planning := TRUE
13 ELSE
14 Planning := FALSE
15 ConfThresh := MIN(MaxConfThresh, ConfThresh + Gain)
16 IF(Planning)
17 StepPlan := StepPlan + 1
18 ConfThresh := ConfThresh - Decay
19 IF(ForwardPlanning)
20 IF(InputFromWorld = FALSE)
21 System uses predictor’s output y

t
 as input

22 ELSE
23 InputFromWorld := FALSE
24 IF(GoalReached OR StepPlan = MaxStepsPlan)
25 IF(StepPlan = MaxStepsPlan)
26 MaxStepsPlan := MaxStepsPlan + 1
27 ELSE
28 MaxStepsPlan := MIN(MaxStepsPlan, StepPlan * 2)
29 InputFromWorld := TRUE
30 IF(BidirectionalPlanning)
31 ForwardPlanning := FALSE
32 ForwardSteps := StepPlan
33 GoalAsInput := TRUE
34 InputFromWorld := FALSE
35 StepPlan := 0
36 ELSE
37 IF(GoalAsInput = TRUE)
38 System uses goal yg as input
39 GoalAsInput := FALSE
40 ELSE
41 System uses back-predictor’s output y

t
 as input

42 IF(StepPlan = ForwardSteps)
43 ForwardPlanning := TRUE
44 InputFromWorld := TRUE
45 StepPlan := 0
46 IF(Planning)
47 IF(ForwardPlanning)
48 Evaluator gets y

t
 and gives V'π[y

t
]

49 Actor gets y
t
 and gives m

t

50 Stochastic selector gets m
t
 and gives a

t

51 Predictor gets y
t
, a

t
 and gives x

t+1
 (y

t+1
)

52 Matcher gets y
g
, y

t
 and gives r

t

121

53 TD-Critic gets V'π[y
t-1
], V'π[y

t
], r

t
, gives e

t-1

54 Evaluator gets y
t-1
, e

t-1
 and learns

55 Actor gets y
t-1
, m

t-1
, a

t-1
, e

t-1
 and learns

56 IF(BidirectionalPlanning)
57 Back-Actor gets y

t
 and gives m

t-1

58 Back-Actor gets y
t
, m

t-1
, a

t-1
(actor), e

t-1
 and learns

59 ELSE
60 Back-actor gets y

t
 and gives m

t-1

61 Back-stochastic selector gets m
t-1
 and gives a

t-1

62 Back-predictor gets y
t
, a

t-1
 and gives x

t-1
 (y

t-1
)

63 Evaluator gets y
t-1
 and gives V'π[y

t-1
]

64 Matcher gets y
g
, y

t
 and gives r

t

65 TD-Critic gets V'π[y
t-1
], V'π[y

t
], r

t
 and gives e

t-1

66 Evaluator gets y
t-1
, e

t-1
 and learns

67 Back-actor gets y
t
, m

t-1
, a

t-1
, e

t-1
 and learns

68 Actor gets y
t-1
 and gives m

t-1

69 Actor gets y
t-1
, m

t-1
 (actor), a

t-1
(back-actor), e

t-1
 and

learns
70 ELSE
71 Evaluator gets y

t
 and gives V'π[y

t
]

72 Actor gets y
t
 and gives m

t
 (already done in line 9)

73 Stochastic selector gets m
t
 and gives a

t

74 Matcher gets y
g
, y

t
 and gives r

t

75 TD-Critic gets V'π[y
t-1
], V'π[y

t
], r

t
 and gives e

t-1

76 Evaluator gets y
t-1
, e

t-1
 and learns

77 Actor gets y
t-1
, m

t-1
, a

t-1
, e

t-1
 and learns

78 System executes a
t
 in the world

79 IF(BidirectionalPlanning)
80 Back-Actor gets y

t
 and gives m

t-1

81 Back-Actor gets y
t
, m

t-1
, a

t-1
(actor), e

t-1
 and learns

Figure 9.3: Pseudo-code of the planning-acting controller. The algorithm is executed at each cycle.
“:=“ is the assignment operator. In the simulation the parameters are set as follows: Decay = 0.000001,

Gain = 0.01, MaxConfThresh = 0.15

When the variable BidirectionalPlanning is set at FALSE the whole controller is

equivalent to the forward planner investigated in chapter 8. Recall that in this case the
controller can be either in planning or acting mode. The mode is decided on the basis of the
controller's “confidence”, the highest of the actions' probabilities. If the confidence is above a
certain threshold the controller acts in the world, otherwise it simulates experience by using
the predictor. When the controller is forward planning the evaluator and actor function and
learn in the same way as they do when acting in the world. As for the previous chapter, the
parameters are set as follows: Decay = 0.000001, Gain = 0.01 and MaxConfThresh = 0.15.

9.3.3 The Planning Components of the Architecture: Bidirectional Planning

If the variable BidirectionalPlanning of the algorithm illustrated in Figure 9.3 is set at TRUE,
the algorithm implements bidirectional planning. As the forward planner, the bidirectional
planner decides if planning or acting on the basis of the measure of confidence at the position
currently occupied by the simulated robot (line 7 to 14). The major difference between the
two algorithms is that while planning the bidirectional planner generates prediction chains
alternately forward from the current position image (line 47 to 55 implement one cycle of
forward chain) and backward from the goal image (line 38; line 60 to 69 implement one cycle
of backward chain). Planning always starts with a forward simulated walk and ends with a

122

backward simulated walk. The length of each backward chain is the same as the last forward
chain (line 32 and 42). Forward chains are executed as in forward planning. Backward chains
are executed through the “back-predictor” and “back-actor”.

The back-predictor is a network with the same architecture as the predictor. While the
predictor is trained to produce the association yt, at → xt+1, the back-predictor is trained to
produce the association yt, at-1 → xt-1 (the time indexes are used backward) i.e. to remember
(or guess) which situation xt-1 led the system to the situation yt after executing action at-1 (line
62). Notice that each couple of experts of the predictor and of the back-predictor
corresponding to a particular action could have been integrated in one bi-directional network
associating xt ↔ xt+1 under action at. This has not been done since for simplicity only feed-
forward networks have been used.

The back-actor has the same architecture as the actor, and is used to generate actions for
the backward chains (the at-1 of the association yt, at-1 → xt-1, see line 60 and 61). Before the
tests shown below the back-actor weights are randomly drawn in the interval [-0.001, 0.001],
so initially it selects actions randomly. During a back cycle that leads from yt to yt-1 (from xt
to xt-1), after the back-actor selects the at-1, the merit of this action is updated according to the
same formula used for the actor (see equation 3) and with the usual error et-1 = (rt + γ V'π[yt]) -
V'π[yt-1]. However, now the merit of the action is updated using yt as input for the back-actor
(and not yt-1 as for the forward actor, line 67). Notice that with this training the back-actor
learns to generate actions that lead to states with the lowest possible evaluation V'π[yt-1], i.e.
states far from the goal and visited few times. When backward chains are generated, the actor
and evaluator are also updated using the error et-1. In particular the actor produces the actions’
merit mt-1 in correspondence to yt-1, and then its weights are updated on the basis of those
merits and the action at-1 selected by the back-actor and back-stochastic selector (line 68 and
69). During forward planning and acting, the back-actor is also trained by using et-1 (line 56 to
58 and 79 to 81). To this end, the back-actor yields the actions’ merit mt-1 in correspondence
to yt, and then its weights are updated on the basis of those merits and the action at-1 selected
by the actor and stochastic selector for yt-1. The overall functioning of the backward planning
algorithm can be summarized as follows. The back-actor learns to yield backward walks that
“escape” from the goal in “straight” lines, hence creating a big area of positive evaluations
around the goal. This area is easily “found” by the actor’s forward walks that, as a
consequence, expand the area toward the position occupied by the simulated robot. At the
same time the actor becomes competent in the area where positive evaluations diffuse.

Some remarks about backward planning are due. Updating the evaluator when the back-
actor is selecting the actions may cause some problems. In fact the actor-critic methods
require that state evaluations reflect the expected reward averaged over the actions selected by
the current policy (i.e. the actor, cf. s. 13.2.3). Notwithstanding this, the choice made here is
justified because the actor's policy and the back-actor's “back-policy” tend to be quite similar
for the following reasons:
• The actor and the back-actor have the same structure and are trained an equal number of

times with the same error signals.
• A state from which the back-actor selects an action is perceptually very similar to the

state to whom this action brings, and from which the actor selects its action.
• The direction of the maximum slope of the evaluation gradient field built by the actor and

by the back-actor tends to be the same (i.e. toward the goal).
Incidentally notice that these observations suggest that maybe it is possible to integrate the
actor and back-actor in a unique network.

123

Figure 9.4: Positions occupied by the simulated robot the first time that it reaches the northeast goal by
reinforcement learning (left) forward planning (centre) and bidirectional planning (right).

Backward planning should present two important advantages vs. forward planning. The

first advantage is in terms of exploration. Updating the evaluations backward from the goal
brings to immediately change the evaluations of states close to the goal. On the contrary,
forward planning starts to update the evaluations only after the goal is encountered for the
first time. Since the first search of the goal is usually done by random walk (but cf. Sutton,
1990; Thrun, 1992; Wyatt, 1997), the event can take very long to occur (the expected time is
exponential in the number of steps separating the start from the goal, Thrun, 1992). The
second advantage is in terms of propagation of evaluations between states. This is particularly
fast if done backward from the goal because newly updated evaluations of states are used to
update the evaluations of other states.

Figure 9.5: The graph reports the performance for both the forward planner and the bidirectional
planner, averaged over 10 simulations run with different random seeds. Y-axis: number of cycles of

planning for each success. X-axis: the first 36 consecutive successes. For graphical reasons the vertical
axis has been cut at 6000: the forward planner took 52,923 planning cycles to achieve the first success.

9.4 Results and Interpretation

9.4.1 Common Strengths of the Forward-Planner and the Bidirectional Planner

The forward planner and the bidirectional planner have been tested and compared with the
scenario and task illustrated previously. The test for each planner has been done 10 times with

0

1000

2000

3000

4000

5000

6000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36

forward planner
bidirectional planner

124

different random seeds: the graphs shown below will report the averages over these 10 runs.
Each time the simulated robot reaches the goal, the number of actions executed, and the
number of planning cycles used to reach it, are measured.

The results of the simulations show that the two controllers share the following strengths.
In order to plan, both controllers only need to know the start (or current) position and the goal
position. Planning is carried out on the basis of the information stored in the predictor and the
back-predictor. Moreover, the goal is reached efficiently from the first time it is pursued: 245
and 186 actions respectively executed by the forward and backward controller vs. an average
of 1432 cycles executed by the random walk (Figure 9.4). This implies that the two planning
controllers are taskable.

When the goal is pursued several times from the same start position, the performance
improves both in terms of planning cycles (cf. Figure 9.5) and actions executed (Figure 9.6).
Notice that when enough experience accumulates the goals are achieved reactively.

Figure 9.6: The graph reports the performance for both the forward planner and the bidirectional
planner, averaged over 10 simulations run with different random seeds. Y-axis: number of actions

executed for each success. X-axis: the first 61 consecutive successes. Curves have been used instead of
a histogram to ease the comparison between the two conditions.

The knowledge that is gathered while planning to reach the goal from a given start is used
to reach the same goal from different starts. Figure 9.5 and Figure 9.6 show that the planning
and acting cycles needed to reach the goal starting from the different start positions, decrease
steadily when the robot is set at the succeeding start positions (the optimal path, not
considering noise and obstacles, is about 15 steps long). This happens even if the start
positions are new (cf. data about the first 12 successes). The reason why this happens is that
when pursuing a goal, the controller visits several states within the model of the world and
learns what to do in order to reach the goal from them. This knowledge is also useful when
the controller has to reach the same goal departing from new starts.

9.4.2 The Forward Planner Versus the Bidirectional Planner

When the performance of the two controllers is compared, the following differences become
apparent. Backward planning is more “goal oriented” than forward planning. The forward
planner spent nearly ten times more planning cycles than the bidirectional planner (52,923 vs.
5,397 cycles) to reach the goal for the first time in the environment. After the first success in
the environment, the bidirectional planner maintained its superiority for the following trials

0

50

100

150

200

250

300

350

1 13 25 37 49 61

forward planner
bidirectional planner

125

(Figure 9.5). This difference was caused by the fact that the forward planner took several
cycles to find the goal for the first time when planning (i.e. while generating the simulated
walks): 18,892 planning cycles on the average over the 10 simulations. In comparison the
backward planner was particularly efficient: in 6 simulations out of 10 it reached the goal in
the environment without having ever reached it while planning. This happened because the
evaluations started to be updated immediately when the controller started to plan since the
goal was immediately “found”. In these regards it can be said that the bidirectional planner
implements a better exploration of the state space.

Figure 9.7: Evaluations yielded by the controller when set at 20 × 20 different positions of the arena.
The area of a white square (positive evaluations) and a black square (negative evaluations) is

proportional to the absolute evaluation yielded at that position. The evaluations have been recorded at
the cycle after the first simulated reaching of the goal in the case of forward planning (left), and after
18,892 cycles in the case of the backward controller (right). 18,892 is the average number of cycles

that forward planning took for reaching the goal for the first time while planning.

This efficiency in exploration leads to a faster propagation of values and updating of the

policy. Figure 9.7 shows the evaluations yielded by the two controllers in 20×20 positions of
the arena after some cycles of action and planning. The bidirectional planner yields
evaluations much closer to the optimal ones than forward planning (recall that the optimal
evaluations are equal to γ to the power of the number of steps to the goal). This exploration
efficiency should be compared with that of other controllers that implement other forms of
“undirected” and “directed” exploration (Thrun, 1992).

Backward planning is also more effective than forward planning in propagating the
evaluations. Direct observation of the dynamics of the graph of Figure 9.7 drawn while the
simulation was running, showed that at the beginning of the simulations with the forward
planner the evaluations fell again to 0, as they were at the beginning of the simulation,
between a (simulated) success and the next one. This happened because in the absence of
positive rewards, forward exploration brought the evaluations toward 0. In fact on the average
the decay coefficient γ lowers the “targets” of the evaluations updated. On the contrary, in the
case of the bidirectional planner positive evaluations were continuously “injected” into the
graph starting from the goal. In fact the evaluation of each state was updated backward from
the goal, so each state’s evaluation was updated on the basis of the goal or on the basis of the
evaluation of a state that had just been updated. As a consequence the evaluation gradient
field approached its final shape quicker.

126

9.5 Limitations of the Neural Bidirectional Planner

The bidirectional planner has three drawbacks. The first one, shared with the forward planner,
is that it relies on the assumption that the model of the environment is enough accurate when
planning starts. Here this assumption is fulfilled since a long training of the predictors is
accomplished before planning starts, and is enhanced by the task in hand. However, it cannot
be guaranteed in general for all other possible situations and for all other task domains (cf. s.
8.5).

The second drawback concerns the backward planning process of the controller. The
generation of backward simulated walks starting from the goal on the basis of the back-actor
and back-predictor may not be possible with some problem domains different from
navigation.

The third drawback is that the bidirectional planner has a quite complex architecture
compared to the forward planner, because it needs the back-actor and back-predictor to
generate simulated walks backward from the goal.

9.6 A New “Goal Oriented Forward Planner” (Not Implemented)

This section proposes a neural planner that is only slightly more complex than the forward
planner, but that might have interesting properties in common with the bidirectional planner.
The key idea of this planner is that one way to exploit the knowledge of the goal without
doing backward search, is to use the goal state to update the evaluation of the goal state itself.
Recall that within the forward planner presented here when the goal is reached a new
simulated walk starts. No “succeeding state's evaluation” is available to update the goal state's
evaluation on the basis of the TD-Error formula. The consequence is that the evaluations of
all states are 0 and all the backups have no effect until the goal is reached. The planner
proposed here updates the evaluation of the goal state toward 1 each time that the forward
simulated walks fails to reach the goal. This “goal oriented forward planner” should have
several strengths in comparison to the forward planner:
• The evaluation of the goal state would become close to 1.
• Because of the generalisation properties of neural networks, all the states having some

resemblance with the goal state would have a positive evaluation and the higher the
resemblance the higher the evaluation. These evaluations would “guide” the forward
searches towards the goal, similarly to what happens with the bidirectional planner.

• The evaluations of the goal and the states similar to it would be continuously renewed.
This is important because the experiments have shown that the evaluations tend to decay
if the goal is not reached continuously.

• The direct updating of the evaluations of the goal state and of the states similar to it,
would progressively be eliminated when the simulated walks start to reach the goal
regularly. This would replace the initial arbitrary evaluations of states similar to the goal
with the more correct evaluations based on the actor's policy.

This planner could be particularly powerful for “assembly planning”, i.e. planning for tasks
where the goal state is made of an “assembly” of objects organised in a pattern, and where
each object in the correct “position” can be considered as a sub-goal (Russell and Norvig,
1995). The planner would also incorporate the idea exploited by some landmark planners that
build the evaluation gradient field on the basis of the similarity between the states and the
goal (e.g. Schmajuk and Blair, 1993). Unfortunately this planner has been envisaged at the
end of the PhD research, when there was no time to implement and test it.

127

9.7 Conclusion

This chapter presented a new neural bidirectional planner. When it plans this planner is more
focussed on the goal than the forward planner presented in chapter 8. In particular it does not
rely on a random-walk search when the goal is pursued for the first time. In fact the
bidirectional planner executes a sequence of explorations (of the model of the environment)
that start both from the current state and from the goal. In this way backups are focussed on
states around the area of the start/current position and around the area of the goal. As in the
previous controller, during these explorations the state evaluations and the action policy are
updated. Moreover, during the backward exploration the back-actor learns to select actions
that bring quickly away from the goal when producing backward simulated walks.

The controller has been shown to have the same strengths of the controller proposed and
implemented in chapter 8. These strengths are: (a) taskability; (b) improvement of
performance when the goal is encountered several times; (c) skill transfer when the same goal
is pursued from different starts.

The simulations have also shown that the controller converges faster than the forward
controller of chapter 8 for two reasons: (a) it is more efficient in exploring the state space
within the model of the environment; (b) it is quicker in propagating the evaluations backward
from goal.

The bidirectional planner has some drawbacks. First, its functioning assumes the
accurateness of the predictors. Second, to work it needs to generate backward walks, and this
may not be possible in some problem domains. Third, it has a quite complex architecture and
functioning. With regards to the latter point, a new “goal-oriented forward planner” has been
proposed that has a complexity similar to the forward planner's one, but that might have some
of the strengths of the bidirectional planner.

128

10 Neural Network Planners and Multi-Goal Tasks

10.1 Introduction: Neural Planners, Interference and Modularity

Problems Tackled. This chapter evaluates how the neural planners implemented in the
previous chapters deal with the problems of generalisation, interference and modularity,
introduced in chapter 7. To this purpose it compares the performance and behaviour of the
reactive systems, forward planner, and bidirectional planner presented in the previous
chapters by using the multi-goal scenario presented in chapter 7 as a test.

What is New and Overview. Chapter 8 and 9 have implemented two controllers developed
within the framework of the Dyna architectures (Sutton, 1990). These controllers are capable
of operating in “reactive mode” or “planning mode”. While planning the controllers execute a
sequence of forward “explorations” from the current state (forward planner) or both forward
from the current state and backward from the goal (bidirectional planner) within the model of
the environment. During these explorations the state evaluations and the action policy are
updated. The action probabilities are used to build a measure of the controller's “confidence”
in the policy, and to switch between acting and planning mode.

Chapter 7 has implemented a modularised version of the basic neural-network actor-critic
architecture capable of coping with asynchronous multi-goal problems. The idea was to use a
modularised neural-network model in order to; (a) exploit generalisation; (b) avoid
interference between input-output associations and problems that did not share common
structure.

The novelty of this chapter (cf. Baldassarre, 2001c) is that the planning controllers
showed in chapter 8 and 9 are integrated with the modular architecture proposed and
implemented in chapter 7, originating two planning modular neural-network controllers. The
performance of these two controllers and reinforcement learning is compared using the
asynchronous multiple-goal task proposed in chapter 7. The comparison aims at verifying if
the results obtained with the controllers engaged in a single goal task still hold for a multiple-
goal task. These results showed that: (a) planning allowed the controller to reach the goal with
improved efficiency in comparison to reinforcement learning the very first time the goal was
pursued; (b) both planning controllers improved their performance when the goal was
encountered several times; (c) the bidirectional planner outperformed the forward planner in
terms of planning and acting cycles needed to achieve the goals, thanks to a more efficient
exploration policy and a faster propagation of evaluations.

The test run in this chapter could appear unnecessary. In fact if the modular
reinforcement-learning architecture shown in chapter 7 is capable of dealing with the multi-
goal task, and the planning controllers introduced in chapter 8 and 9 work well independently
of the underlying reinforcement-learning architecture used, then a controller based on both
should not have problems with multi-goal tasks. This is not the case: planning controllers
could be affected more seriously by catastrophic interference than the corresponding
reinforcement learning systems. The reason is that in the case of reinforcement learning, when
a goal is reached a new goal is pursued. Instead, in the case of planning the controller focuses

129

on the same goal for a long time before pursuing a new one. For example, recall that the
neural forward planner needed to reach the same goal several times in planning mode before
starting to act, reaching it in the environment, and finally pursuing another goal. This might
exacerbate the effect of catastrophic interference because it lengthens the period of time
elapsed between two experiences with the same goal.

Chapter's outline. S. 10.2 briefly describes the test used to compare the controllers. S. 10.3
explains how the planning controllers showed in chapter 8 and 9 have been integrated with the
modular reactive system of chapter 7. S. 10.4 presents the results of the tests, and in particular
shows that modularity also helps to deal with interference problems in the case of planning,
and that the forward planner has problems dealing with multi-goals while the bidirectional
planner does not. Finally s. 10.5 and s. 10.6 analyse the drawbacks of the modular planners
and draw conclusions.

10.2 Scenario: Again the Asynchronous Multi-Goal Task

As mentioned, the task used to test the algorithms is the one illustrated in chapter 7 (cf. Figure
7.1 for the scenario used for this task). Recall that such task requires that the simulated robot
pursue three goals asynchronously. At the beginning the simulated robot has to pursue one
goal from a start position. Then each time the simulated robot reaches a goal, another goal
randomly drawn from the three goals is assigned to it until the simulation ends.

10.3 Architectures and Algorithms

10.3.1 Modular Reactive Components

The components of the forward planner and the bidirectional planner are shown in Figure
10.1. The reinforcement learning components (evaluator, actor, TD-critic) of the controllers
are the same as for the controller illustrated in chapter 7 (but now all learning rates have been
set at 0.02).

The evaluator and the actor contain 6 experts each. Recall that the evaluator is based on a
mixture of experts network, suitably modified to cope with the bootstrapping nature of the
evaluator's learning process. The actor is based on a novel hierarchical architecture that
repeats at two levels (gating network and single expert networks) the generation of the
“merits” and the stochastic “winner-take-all” competition to select the experts and the actions.
Notice that both the actor and the evaluator get as input not only the input (contrasts) about
the current state, but also the (contrast) pattern encoding the goal. This allows the evaluator
and the actor to yield state evaluations and actions that depend not only on the current state,
but also on the goal.

As usual the matcher produces the internal reward, and functions both when learning and
when planning, while the TD-Critic produces the learning signal et.

130

Figure 10.1: The controller of the simulated robot. Networks with a bold, thin and dashed border
implement reinforcement learning, forward planning, and backward planning respectively. Arcs and
arrows indicate forward and backward connections that “copy” a pattern from one layer to another.

The four and five spike stars indicate the channels respectively set open and close by the action-
planning controller when acting (vice versa when planning). Dashed arrays indicate the learning signal

used to update the weights of the evaluator, actor and back-actor.

10.3.2 Neural Modular Forward Planner

The functioning of the forward planner is the same as in chapter 8 and 9. The fundamental
component of this planner is the predictor (the “model of the environment”). An important
thing to stress here is that even if here the planner has to pursue different goals, the predictor
yields predictions on the basis of the (contrast) input yt and the selected action at only. It does
not need the information about the goal xg (yg): the knowledge that it stores about the
consequences of actions is independent of the particular goal pursued. As a consequence,
while with multi-goal tasks the actor and the evaluator need information about the goal
pursued to function, the predictor does not. Indeed, the predictor is identical in both the single
(cf. s. 9.3.2) and multi-goal tasks. In chapter 8 and 9 we have seen that this fact is at the basis
of the taskability of the planners proposed here.

The “action-planning controller” controls the flow of information among the different
components of the whole controller when it is acting, planning forward (forward planner), and
planning forward and backward (bidirectional planner, cf. s. 10.3.3). Its functioning is the
same as the action-planning controller illustrated in s. 9.3.2 and the parameters of the
algorithm are set at the same values used there: Decay = 0.000001, Gain = 0.01,
MaxConfThresh = 0.15.

As in chapter 8 and 9, when the controller is forward planning or acting (this is true both
for the forward planner and the bidirectional planner) the actor and evaluator function and
learn in the same way they do when acting in the environment. We have already seen in s.
8.3.2 the events that take place in a forward planning cycle. Here these events are slightly
different because the actor and the evaluator take into account the goal pattern yg. The new
situation is summarised in Figure 10.2 (refer to s. 8.3.2 for an explanation).

Matcher

100 100

Evaluator

100

Predictor

8 100

Actor

Stoch. sele.

8

100

50

100

50

Goal Input

Contrasts

Learning
signal

Action-planning controller

TD-Critic

Back-Predictor

8 100

Back-Actor

100

Stoc. sele.

8 50

100 100 100 100

Gating net. Gating net. Gating net.

131

01 Evaluator gets y

g
, y

t
 and gives V'π[y

t,
 y

g
]

02 Actor gets y
g
, y

t
 and gives m

t

03 Stochastic selector gets m
t
 and gives a

t

04 Matcher gets y
g
, y

t
, and gives r

t

05 TD-Critic gets V'π[y
t-1,

 y
g
], V'π[y

t,
 y

g
], r

t
 and gives e

t-1

06 Evaluator gets y
g
, y

t-1
, e

t-1
 and learns

07 Actor gets y
g
, y

t-1
, m

t-1
, a

t-1
, e

t-1
 and learns

08 IF(Planning)
09 Predictor gets y

t
, a

t
 and gives x

t+1
(y

t+1
)

10 ELSE
11 System executes a

t
 in the environment

Figure 10.2: Pseudo-code for a cycle of forward planning.

10.3.3 Neural Modular Bidirectional Planner

In the case of the bidirectional planner the action-planning controller (illustrated in s. 9.3.2)
generates simulated walks alternately forward from the current state and backward from the
goal. Forward walks are executed as in forward planning. Backward walks are executed
through the “back-actor” and “back-predictor”.

01 Back-actor gets y

g
, y

t
 and gives m

t-1

02 Back-stochastic selector gets m
t-1
 and gives a

t-1

03 Back-predictor gets y
t
, a

t-1
 and gives x

t-1
 (y

t-1
)

04 Evaluator gets y
g
, y

t-1
 and gives V'π[y

t-1,
 y

g
]

05 Matcher gets y
g
, y

t
 and gives r

t

06 TD-Critic gets V'π[y
t-1,

 y
g
], V'π[y

t,
 y

g
], r

t
 and gives e

t-1

07 Evaluator gets y
g
, y

t-1
, e

t-1
, and learns

08 Back-actor gets y
g
, y

t-1
, a

t-1
, e

t-1
 and learns

09 Actor gets y
g
, y

t-1
 and gives m

t-1

10 Actor gets y
g
, y

t-1
, m

t-1
 (actor), a

t-1
 (back-actor), e

t-1
, and

learns

Figure 10.3: Pseudo-code for a cycle of backward planning.

Recall from chapter 9 that the back-actor has the same architecture as the actor, and is

used to generate actions for the simulated backward walks. Now, similarly to the actor, the
back-actor has to take into account the goal and implement the association: yt, yg → at-1.
Notice that the back-actor is also trained while performing forward planning, so in the case of
the bidirectional planning controller, a line of code has to be added to the algorithm of Figure
10.2:
Back-Actor gets y

g
, y

t
, m

t-1
 (back-actor), a

t-1
 (actor), e

t-1
 and learns

The modular back-predictor is a network with the same architecture as the modular
predictor, and functioning as the back-predictor illustrated in s. 9.3.3. Before the main tests,
the back-predictor is trained to implement the association that yields the “expected previous
input”: yt, at-1 → xt-1.

During the backward walks also the evaluator and actor are trained using e. The events
that take place in one cycle of backward planning are summarised in Figure 10.3. Notice that

132

unlike the controller of chapter 9, the functioning and learning of the evaluator and actor
depend on the goal pattern yg, while the back-predictor functions exactly as in that chapter. In
fact, like the predictor, the back-predictor stores knowledge that does not depend on the
particular goal pursued.

With training the back-actor learns to yield backward walks that “escape away” from the
goal in “straight” lines, hence creating a big area of positive evaluations around the goal. This
area is “easily” found by the actor's forward walks that, as a consequence, progressively
expand the area itself toward the start. At the same time the actor becomes competent in the
whole area where positive evaluations diffuse.

10.4 Results and Interpretation

10.4.1 Modularity and Interference

The reinforcement learning system, the forward planner, and the bidirectional planner were
tested with the multi-goal task. 10 simulation were run with different random seeds for each
controller, each for a sequence of 2000 achievements of the goals. For all the three
controllers, 7 out of 10 runs were successful, i.e. the system converged to a quite efficient
path from the start to the goal (cf. Figure 10.6). In these successful runs the evaluator used
three different experts to encode three different evaluation gradient fields corresponding to the
three goals (more precisely: in each position of the arena, and for each goal, the evaluator had
a probability above 99% of selecting the same expert). Figure 10.4 shows the gradient fields
relative to the three goals in one of the successful simulations.

Figure 10.4: Evaluation gradient fields for two of the three goals (north-west, east, and south-west
goals). For each goal the robot was set at 20×20 different positions of the arena, and the evaluator's

output for that position was measured. Each cell of each graph is drawn in a position corresponding to
the position in the arena where the evaluation was measured. The area of each cell is proportional to

the evaluation. White cells represent positive evaluations and black cells represent negative
evaluations. Cells with a bold border mark the goals’ positions.

The 3 runs that failed (each controller did the same) did so because the evaluator

employed the same expert to yield the evaluations related to two different goals. As a
consequence, the evaluation gradient field had two peaks, the actor was trained to go to both
peaks, and the resulting behaviour was dithering. This shows that in the task that is considered
here the specialisation of the evaluator's experts for the different goals is crucial for the

133

correct functioning of the architecture (cf. chapter 7 on this. In this chapter a parameter search
was done to avoid this problem).

Figure 10.5: Left (grids of numbers): actor's expert with maximum probability of use in 20×20
positions of the arena in correspondence to the three goals. The position of the goal is marked with a

square. Each number indicates the expert with the highest probability of being selected, in the position
occupied by the number itself. Right: the histograms summarise the frequencies of use (y-axis) of the

6 experts (x-axis) in the whole arena.

5 2 5 5 5 3 5 5 5 5 5 3 3 3 3 3 2 3 3 4
2 2 0 5 5 5 5 3 5 5 5 5 2 1 5 5 2 2 3 3
2 2 2 5 5 5 5 5 5 5 5 5 5 2 5 5 5 2 3 3
2 2 2 2 5 5 5 5 5 5 5 5 5 5 5 5 3 2 3 3
5 2 2 2 5 5 5 5 5 5 5 2 2 5 5 5 2 6 6 0
2 2 2 2 2 5 5 3 0 0 2 2 2 2 3 3 3 3 3 0
2 2 2 2 2 5 5 1 0 0 2 2 3 3 3 3 3 3 4 4
2 2 2 2 2 3 3 1 1 5 1 3 3 3 3 4 4 4 1 2
1 2 3 2 2 2 3 1 1 3 3 3 4 2 4 4 4 2 1 2
1 2 3 1 2 2 3 1 3 3 2 4 4 3 4 4 2 1 2 3
1 2 1 1 2 2 2 3 3 2 2 2 5 1 4 1 1 1 3 3
5 2 3 3 2 2 2 3 3 5 5 5 3 5 1 1 1 1 2 5
3 5 3 3 2 2 2 2 2 5 5 5 3 3 1 3 1 1 5 1
5 3 3 2 2 2 2 2 3 3 5 3 3 2 6 3 5 1 1 1
0 0 3 2 2 2 2 5 5 3 3 5 5 3 4 1 1 1 2 3
1 2 2 2 2 2 2 2 2 0 0 2 4 2 3 1 1 3 3 3
3 2 2 2 2 1 2 2 2 0 0 3 3 2 5 1 1 1 3 3
2 2 3 1 1 1 1 1 2 2 3 2 2 2 1 5 1 5 3 3
1 2 2 1 1 1 1 1 1 2 2 1 1 2 1 5 5 4 3 3
1 1 2 3 1 1 5 1 1 2 2 2 1 1 1 1 1 5 3 5

6 6 6 6 6 2 6 6 6 6 6 6 6 6 6 6 6 6 6 6
6 2 0 5 6 6 6 5 6 6 6 6 6 6 6 6 6 6 6 6
2 2 2 5 5 6 6 6 6 6 6 3 6 6 6 6 6 6 6 6
6 2 2 2 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6
2 2 2 2 3 5 5 3 3 3 3 2 3 3 3 3 3 3 3 0
2 2 2 2 6 6 6 6 0 0 2 2 6 6 6 6 6 6 6 0
2 2 2 2 2 6 6 6 0 0 2 2 6 6 6 6 6 6 6 6
6 2 6 2 2 6 6 1 6 6 2 6 6 6 6 6 6 6 1 2
6 2 6 2 2 6 6 1 1 6 6 6 6 6 6 6 6 2 2 2
2 2 6 6 2 2 6 1 6 6 6 6 6 1 6 6 2 2 6 6
2 2 6 6 6 2 2 6 6 6 2 2 2 6 1 1 2 2 6 6
6 6 6 6 6 2 2 2 6 2 2 2 6 6 6 6 6 2 6 6
3 6 6 6 2 2 2 2 2 2 6 6 6 6 6 2 6 1 6 2
2 3 3 2 2 2 2 2 6 3 6 6 6 6 6 6 6 1 2 6
0 0 6 2 2 2 2 2 6 3 6 6 6 6 6 6 2 6 6 6
6 2 2 2 2 2 2 2 6 0 0 6 6 6 6 6 6 6 6 3
2 2 2 2 1 2 2 6 2 0 0 6 6 6 6 6 6 6 6 3
2 2 2 1 1 1 1 2 2 6 6 6 2 6 6 2 6 6 6 6
2 2 2 1 1 1 1 2 2 2 6 6 6 6 2 6 6 6 6 6
2 2 2 2 2 2 2 2 6 6 2 2 2 6 2 6 6 6 6 6

5 5 5 5 5 5 5 5 5 5 5 5 5 4 5 5 6 5 5 5
5 5 0 5 5 5 5 5 5 5 5 5 5 1 5 5 5 5 5 5
5 2 2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 3 5
5 2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 6 3 5
5 5 5 5 5 5 5 5 5 5 5 4 5 5 5 5 6 6 6 0
5 5 5 5 5 5 5 5 0 0 5 5 5 5 6 6 3 6 4 0
5 5 5 2 5 5 5 5 0 0 5 5 5 3 3 3 6 4 4 1
5 5 5 5 5 5 4 1 1 5 5 5 5 6 4 4 4 4 1 1
5 5 5 5 5 1 4 1 1 5 5 5 5 1 4 4 4 1 1 5
5 5 5 5 1 4 1 1 5 3 5 5 5 4 1 4 1 1 1 3
5 5 5 1 2 2 3 5 5 5 5 5 1 1 1 1 1 1 5 5
5 5 5 1 1 5 2 4 5 5 5 5 5 1 1 1 1 1 5 1
5 5 3 3 1 5 2 2 3 3 3 3 3 3 1 1 1 1 5 1
5 3 3 5 5 1 2 2 5 5 5 5 3 4 6 5 1 1 1 1
0 0 5 5 2 5 5 5 5 5 4 5 5 5 4 1 1 5 5 5
5 5 5 1 5 1 1 5 5 0 0 1 6 5 5 5 1 5 5 5
5 2 5 1 1 1 1 2 5 0 0 5 5 6 5 5 1 5 5 5
1 5 3 1 1 1 1 1 5 5 1 5 5 1 5 5 5 5 5 5
1 1 1 1 1 1 1 1 1 5 5 4 1 1 5 5 5 5 1 3
1 1 1 1 1 1 5 1 1 5 5 5 1 1 1 1 5 5 5 5

0

50

100

150

200

250

1 2 3 4 5 6

0

50

100

150

200

250

1 2 3 4 5 6

0

50

100

150

200

250

1 2 3 4 5 6

134

In the 7 successful simulations, the actor learned to reach the goals in few steps from any
point of the arena (see Figure 10.6, explained later). The function of the actor does not seem
to require a precise specialisation as for the evaluator: more than one expert is used to achieve
one goal, and the same expert is used to achieve many goals. Figure 10.5 shows the actor's
expert that has the highest probability of being selected in 20×20 positions of the arena for the
three goals. Clearly the actor uses different experts to handle different areas of the arena for
the same goal (cf. chapter 7).

10.4.2 Taskability

For each simulation the number of actions per “success” (achievement of the assigned goal)
was measured for each goal reached and then plotted against the cumulated number of
successes. Figure 10.6 shows this measure for the three controllers (averaged over the 7
successful random seeds; a forward moving average of 20 steps has also been used to smooth
the curves. Recall from s. 7.2, that the optimal path to the goals, not considering noise and
obstacles, is about 10 steps long). The results confirm the results previously obtained with
single goal tasks (cf. chapter 8 and 9).

Figure 10.6: Performance of the three controllers (averaged over 7 random seeds per controller;
smoothed with a 20-step moving average). Y-axis: number of actions per success. X-axis: successes.

The comparison between the performance of planning vs. reinforcement learning shows

that planning allows the controller to reach the goals with improved efficiency from the very
first time each goal is pursued (cf. Table 10.1): reinforcement learning takes 719 actions on
average, the forward planner about 286 actions and the bidirectional planner about 199
actions. The situation is similar for the second goal pursued (see the explanation below for the
reason why the performance with the second goal is worse than the one with the first goal).
These results show that the planners are taskable (cf. s. 5.1.3).

10.4.3 From Planning To Reaction

Figure 10.6 shows another interesting result. Pursuing a goal several times also improves the
performance of the controller in the case of planning (cf. s. 8.4.2). This happens because the
information gathered with planning and with direct experience is merged appropriately and

0

200

400

600

800

1000

1200

1400

0 500 1000 1500 2000

Reinforcement learning
Forward planner
Bidirectional planner

135

incrementally in the weights of the evaluator and actor. This is a typical strength of the Dyna
architectures (Sutton, 1990).

 Reinforcement
learning

Forward
planning

Bidirectiona
l planning

1st goal 719 286 199

2nd goal 1407 420 297

Table 10.1: Number of actions taken by the three controllers to reach the first and second goal the first
time they are assigned to them (averaged over 20 simulations run with different random seeds).

10.4.4 The Forward Planner Versus the Bidirectional Planner

As regards the comparison between the forward planner and the bidirectional planner, Figure
10.6 shows that before convergence the bidirectional planner outperforms the forward planner
in terms of number of actions taken to reach the goals. One reason for this, probably of minor
importance, is that the forward planner spends more cycles planning than the bidirectional
planner (see below). In fact recall that while planning some actions are executed to avoid that
the simulated robot gets stuck in situations where it does not succeed in becoming “confident”
enough (cf. the algorithm illustrated in s. 9.3.2, Figure 8.3). These actions are in addition to
the actions that are executed when the simulated robot becomes enough confident.

Figure 10.7: Cycles spent planning by the forward planner and bidirectional planner (y-axis) to
achieve the first 36 goals (x-axis). Average over 24 simulations run with different random seeds.

Another reason is that back planning focuses exploration and learning around the goal.
Direct observation of the behaviour shows that this area, where the simulated robot has to
move to the specific position corresponding to the goal, is a particularly difficult part of the
task: the simulated robot engages in a kind of random walk around the goal area searching for
the goal. The reason seems to be that when the simulated robot is very far from the goal,

0

10000

20000

30000

40000

50000

60000

70000

80000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36

Forward planner

Bidirectional planner

136

about 50% of the moves take it towards the goal, while when very close to the goal only
12.5% of moves (1 out of 8) takes it towards the goal. So when the controller is enough
confident at the current state and starts to act, its actual competence for the area near the goal
is higher in the case of the bidirectional planner than in the case of the forward planner.
Further investigation should verify this explanation and check if this result holds for problem
domains different from navigation.

Figure 10.7 shows the number of planning cycles per success taken by the two planning
controllers for the first 36 goals reached (average over 24 successful simulations out of 32 run
with each controller with different random seeds: 8 runs out of 32 failed). Many runs have
been executed to obtain more reliable data (and the quite regular graph shown in Figure 10.7).
An important result is that the planning cycles fall close to 0 when the controller experiences
the same goals several times. The explanation of this is that when the same goal is
encountered several times, the “confidence” associated with it increases over the confidence
threshold, so that planning is no longer required and the goal is achieved reactively.

Figure 10.7 also shows that the bidirectional planner outperforms the forward planner in
terms of number of cycles spent planning before reaching the goals. This happens for three
reasons (cf. s. 0). The first reason depends on the way the two algorithms explore the model
of the environment. The forward planner spends a lot of time searching for the goal
unsuccessfully given that the goal is searched by a random walk, while the bidirectional
planner “finds” the goal from the very first cycles of planning. So, in contrast to what happens
for the bidirectional planner, the forward planner wastes a lot of planning cycles before
starting to update the evaluations and, consequently, to update the action policy.

The second reason is that the bidirectional planner is more efficient than the forward
planner in propagating the evaluations backward from the goal to the other states. In fact it
updates the evaluation of each state on the basis of the evaluation of a state that has just been
updated (cf. Lin, 1992, and Thrun, 1992).

The third reason is very important because it involves the different functioning of the two
controllers with multi-goal tasks, and a problem caused by the generalisation property of
neural networks. After enough confidence is attained and the first goal is reached, the action
probabilities are quite biased in favour of that goal. When the goal changes, half actor's input
pattern (the part yg that encodes the goal) is changed for each state visited (cf. Figure 10.1).
Given that the experts are not yet specialised for the different goals and that in general the
actor is responding to the second goal mostly with the same weights used for the first goal, the
probabilities are still quite biased in favour of the first goal. This implies that the random walk
used to explore the model of the environment is biased away from the second goal. Figure
10.7 shows that the forward planner spends nearly a double number of cycles planning to
reach the second goal than to reach the first goal, while the bidirectional planner only spends
few cycles more.

Simulations not reported here show that if the level of the confidence threshold is
increased so that the number of cycles spent planning for the first goal increases before
achieving enough confidence, this drawback of the forward planner gets worse. In fact
planning searches around the area of the first goal, and never reaches the area of the second
goal. In contrast, bidirectional planning forces the search around the newly assigned goals.
This leads the evaluations, and hence the action probabilities, to change according to the new
goal.

137

10.5 Limitations of the Modular Planners

These results are encouraging, but the planning controllers presented have also some
drawbacks. The forward planner and even more the bidirectional planner have a quite
complex architecture composed of inhomogeneous neural networks.

The functioning of both planners depends on the possibility of building a reliable model
of the environment. When planning starts, the planners assume that the model of the world is
sufficiently accurate, and that training the evaluator, actor and back-actor through it will
necessarily improve their abilities to evaluate and act (cf. s. 8.5). This assumption is not true
in general for all task domains.

Backward planning relies on the possibility of training the back-actor to “guess” what
action could have led to a particular state. It is not clear if this can be done within problem
domains different from navigation.

The experts of the modular evaluator fail to specialise in 8 simulations out of 32 run with
different random seeds. This raises interference problems and impairs the policy learning (cf.
s. 7.6 and 12.3 for a discussion and a possible solution to this problem).

10.6 Conclusion

This chapter has tested the two planning controllers presented in previous chapters with a
simulated robot engaged in a new multi-goal stochastic shortest-path problem. In order to
allow the architecture to cope with multi-goal tasks the evaluator, the actor and the back-actor
components, previously implemented with monolithic neural networks, have been replaced by
modular networks.

The results of the test have shown that the specialisation of the evaluator's experts (one
for each goal) and the partial specialisation of the actor (one prevailing expert for each goal)
allows the controllers to cope with multiple goals. The other results confirmed the results
obtained with single goal tests. The planners showed an efficiency higher than that of the
reinforcement learning controller from the very first time a goal was pursued. With successive
experiences the performance further improved, and the planners became “confident” enough
and did not need to plan anymore. The bidirectional planner outperformed the forward
planner both in terms of actions and planning cycles needed to achieve the goals, thanks to its
capacity to focus exploration around the start and the goal and to propagate the evaluations
quickly. Moreover, focussing around the goal has been shown to be of crucial importance
when dealing with multiple goals because it allows breaking a wrong bias of the random walk
search towards previously pursued goals.

Notwithstanding these encouraging results, the planners are affected by some drawbacks
such as the necessity to rely on a sufficiently accurate model of the environment (planning
starts after suitably training the predictor and back-predictor), a high complexity of the overall
architecture, and an imperfect functioning of the evaluator's gating network that prevents a
correct specialisation of the neural “experts”.

138

11 Coarse Planning

11.1 Introduction: Abstraction, Macro-actions and Coarse Planning

Problems Tackled. This chapter addresses the problem of how implementing abstract
planning with neural network systems. The benefits of abstraction are well known in the
classic artificial intelligence literature: fast exploration of alternatives, creation of large plans
without incurring in combinatorial costs, possibility of planning on the basis of a model of the
environment that ignores the details (cf. Sacerdoti, 1974, and several works in Allen et al.,
1990). Is it possible to exploit some of these benefits within the neural planners implemented
in this thesis? This chapter attempts to give a first answer to this question within the problem
domain of navigation. It also shows that discounted reinforcement learning has some
problems in handling the long periods of time typically involved with abstract planning.

Overview. In order to tackle the problem of abstraction with neural systems, the forward and
backward neural planners introduced in chapter 8 and 9 have been used to carry out planning
on the basis of “macro-actions”, defined as sequences of identical “primitive-actions”, e.g.
“north-north-north-north”. The macro-actions have first been used to train the predictor, and
then have been used to execute planning. This form of planning, based on this special (simple)
kind of macro-actions has been called “coarse-planning” for ease of reference. As for the
other neural planners proposed in the previous chapters, the planning process has been used to
improve the evaluations and the policy of the controller. Then the policy has been used to act
at the level of primitive-actions.

A key issue of abstraction is the possibility of dealing with long periods of time. In
chapter 6 it has been shown that discounted reinforcement learning may have some problems
handling long periods of time because the optimal evaluations for states far from the goal are
near zero. With the presence of noise, the gradient field over such states does not give enough
information to create the policy. The fact that these problems have been encountered again
while running the simulations of this chapter related to abstract planning, confirms their
relevance. In the following sections first the effects of the problem on abstract planning are
shown. Then a solution is proposed and implemented based on the use of different discount
coefficients for planning and for acting. Unluckily, this solution is not fully satisfactory
because it compromises the useful complementarity between planning and reactive behaviour
of the controllers proposed here and highlighted in the previous chapters.

What is New and Related Literature. The idea of macro-actions made up by a certain
number of actions of the same kind, and their use for abstract planning, is new (Baldassarre,
2001d). This idea is closer to the idea of “abstract operators” of classical artificial intelligence
planning (cf. s. 2.4.3) than to the idea of options as sub-policy of the framework of
reinforcement learning and options (Sutton et al., 1998; cf. s. 13.2.7). The issues related to the
different discounted rates have been developed within the framework of reinforcement
learning and options, but the analysis of the “discounted reinforcement learning delay
problem” within abstract planning is new.

139

Lin (1993) presents a work related to macro-actions. This work studies a simulated robot
that has to move from one room to another room of an office. The simulated robot is first
trained to develop separate simple policies as “follow the wall”, “enter the door”, etc. on the
basis of simple primitive-actions. Then all these building-block policies are treated as single
macro-actions by a higher-level reinforcement learning procedure that is trained to trigger
them in order to solve a path-finding problem. The results show the considerable advantages
that this technique has versus learning the policy on the basis of the primitive-actions. Even if
this work is different from the simulations presented in this chapter because it does not deal
with planning, the idea of applying reinforcement learning to “hardwired” macro-actions (this
chapter) or sub-policies (Lin, 1993) is common to the two.

Nehmzow et al. (1991) have proposed an experiment where a robot, following a wall
through a pre-programmed behaviour, uses information about the commands sent to the
motors and their duration to recognise locations in the environment through a self organising
neural network (Kohonen, 1982). This is an interesting form of indirect abstraction with
regards to the rich sensory information: it is very compact but still sufficient to accomplish the
location recognition task. Tani and Nolfi (1999) use self-organising neural networks to
abstract information with regards to perception. Interestingly, they also exploit signals
repeated over long periods of time (in this case sensory signals) to enhance abstraction.

Before passing to consider the details of coarse planning, it is interesting to review the
work of McGovern et al. (1997), because it presents some results that are useful in
interpreting the results of this chapter. The work of McGovern et al. (1997) has been
developed within the framework of reinforcement learning, options and macro-actions (cf. s.
13.2.7). It presents the result of an interesting empirical research directed to investigate the
advantages and disadvantages of reinforcement learning controllers based on “macro-
actions”. The first result shown by the authors is that macro-actions influence the exploratory
behaviour of the controller such that more relevant states are visited more often. The second
result is that macro-actions allow the system to propagate rewards more rapidly.

Chapter's Outline. S. 11.2 presents the scenario of simulation and s. 11.3 illustrates the
architecture and functioning of the “coarse planner”. Then two groups of results are presented.
The first group of results shows the functioning of coarse planning and the advantages that it
produces vs. planning at a primitive level (s. 11.4.1 to s. 11.4.3). The second group of results
shows how different discount coefficients, used for planning at a coarse level and for acting at
a primitive level, affect the evaluations, the quality of action, and the speed of learning (s.
11.4.4). Finally s. 11.5 and s. 11.6 analyse the drawbacks of the coarse planner and draw
conclusions.

11.2 Scenario of Simulations: A Simplified Navigation Task

The environment used in the simulations is the simple environment considered in s. 6.2 (cf.
Figure 6.1). This scenario is reproduced in Figure 11.1 for convenience. This figure also
shows the goal used in the simulations. This simple environment has been used to simplify the
resulting gradient field and ease the interpretation of the results (see below).

The simulated robot is the usual one (cf. s. 6.2). The size of the steps of the simulated
robot has been one of the parameters investigated with the simulations. The simulated robot's
diameter has always been set at the same size of the step's length. Notice that while the
simulated robot’s step size is very important, the simulated robot’s diameter has only
graphical effects (however, the diameter of the robot affects the way one thinks about the
relative size of the robot and the arena). Perception and action are affected by the usual noise.

140

The simulated robot's task is to reach the goal position from the start position and then from
other positions chosen randomly.

Figure 11.1: Left: the scenario of the simulations containing the goal (star), four landmarks (black
circles), the scope of the simulated robot's 50 visual sensors (delimited by the rays), the simulated
robot at the start position (white circle at origin of rays). Right, from top to bottom: the simulated

robot’s activation of the visual sensors at the start position (the position occupied by the robot in the
graph on the left), its re-mapping into contrasts, and the goal (contrasts).

11.3 Architectures and Algorithms: Coarse Planning with Macro-actions

The controller used for the experiments of this chapter is the forward planner investigated in
chapter 8 and reported in Figure 11.2 for convenience.

Figure 11.2: The controller of the simulated robot. Networks with a bold and thin border implement
reinforcement learning and planning respectively. Arcs and arrows indicate forward and backward
connections respectively. These “copy” a pattern from one layer of units to another. The four (five)
spike stars indicate the channels set open (close) by the action-planning controller when acting (vice
versa when planning). Dashed arrays indicate the learning signal used to update the weights of the

evaluator and actor

Matcher

100 100

Evaluator

100

Predictor

8 100

Actor

100

Stoc. sele.

8

100

50

100

50

Goal

Contrasts

Input

Learning signal

Action-planning controller

TD-Critic

141

The parameters are set at the same values used in chapter 8 with the exception of the
learning rates of the actor and critic, set at 0.05 in the simulations of this chapter, the Decay
and Gain parameters of the planning algorithm, set both at 0.00001, and the MaxConfThresh
parameter, set at 0.15 (see below for the justification of these choices).

Figure 11.3: Left: The relationship between a macro-action and the primitive-actions that make it up.
Right: A possible path simulated while planning and the path that would be followed while acting in

the environment.

The key difference between the functioning of the planner used in this chapter and the

functioning of the planner of chapter 8 is that the “granularity” of planning is coarser than the
granularity of the actions' execution. In particular (cf. Figure 11.3):
• Planning at a coarse level is obtained by training the predictor in a way different from the

one employed in chapter 8. In the latter case the predictor was trained to predict the input
pattern following the execution of a single (primitive) action in correspondence to the
current input pattern. Now the predictor is trained to predict the input pattern that follows
the execution of a macro-action. A macro-action is made up by a sequence of a certain
number of primitive-actions (2, 4, 10 in the simulations reported here). The primitive-
actions that make up a macro-action are identical. An example of macro-action that is
made up of 4 identical primitive-actions is this: “north-north-north-north”.

• When the controller is planning and the actor selects an action (e.g. “north”), this action
is “executed” within the predictor and its effect results in a macro-action's effect, i.e. in
the prediction of the effects of a long movement. This happens because the predictor has
been trained in terms of macro-actions.

• When the controller is acting in the environment, the actor selects an action (e.g. “north”)
but now the effects of this selection result in a small movement in the environment
corresponding to the execution of the a primitive-action.

As we shall see, the experience accumulated by the evaluator and actor while planning at a
coarse level can be used to act at a fine level. This is possible because of the generalisation
property of neural networks and because of a property of navigation tasks (in particular
navigation tasks in open spaces) for which the direction of optimal primitive-actions and
optimal macro-actions often coincide (see below).

A possible path
“simulated” through

the predictor by
planning at the macro

level

Macro-action made up by…

…4 primitive-
actions.

Possible path
experienced at the

primitive level
while acting in the

environment

142

11.4 Results and Interpretation

11.4.1 Reinforcement Learning at a Coarse Level

The first simulation tested the performance of the controller running in reinforcement learning
mode (the confidence threshold was fixed to a low value, 0, so the controller never planned).
The step of the simulated robot was set at 0.025 (in all the previous chapters the step
measured 0.05). The optimal path to the goal, not considering the negative effects of noise, is
about 20 steps (= 0.5/0.025). The simulated robot was set at the start, and had to learn to reach
the goal. When the simulated robot reached the goal it was set at a new random location in the
arena, and had to reach the goal again from there. This was done until 60,000 cycles had been
executed. Figure 11.4 shows the performance of the controller, measured as the number of
cycles per success. This and all the graphs reported in this chapter refer to an average over 10
simulations run with different seeds of the random number generator. The performance
improves from about 8000 to about 120. The graph also reports the performance, equal to
7712, of the simulated robot following a random walk (it was obtained setting the learning
rates of the critic and actor to 0).

Other simulations were run to test the learning capabilities of the reactive components at
different levels of the granularity of actions execution given the scenario’s dimensions (1 by
1). This was done by changing the dimension of the simulated robot's step. In particular, in
order to interpret the results of the simulations shown below, it was important to evaluate the
learning capabilities of the reactive controller when its step was small in comparison with the
arena/landmarks.

Figure 11.4: Performance of the controller in the reinforcement learning mode (y-axis) plotted against
the actions executed (x-axis). Average over 10 runs of the simulation repeated with different random

seeds.

The results show that if the step's size is reduced to 0.0125, i.e. it is divided by 2 with

regards to the previous simulation (where it was 0.025), the reinforcement learning algorithm
is not capable of learning anymore. The reason is that the emergent evaluations' gradient field
is rugged and has several local peaks (see below for some examples). The consequence is that
the actor tends to learn to take the robot to local peaks. The evaluations' gradient field is
rugged because of the simplicity of the sensory system and the neural architecture used for the
evaluator (cf. s. 6.4.2, 6.4.3, and 6.4.5). Analogous negative results are obtained with a step

0

1000

2000

3000

4000

5000

6000

7000

8000

0 10000 20000 30000 40000 50000 60000

Reinforcement learning
Random walk

143

smaller than 0.0125. With a step measuring 0.05 or 0.1 the controller learns properly. The
reason why training is successful with long steps (0.025, 0.05, and 0.1) is that they allow the
simulated robot to “jump” away from the local peaks and to reach positions with differences
in the evaluations that on average tend to reflect the actual distances from the goal.

11.4.2 The Advantages of Coarse Planning

The next two simulations have been run to test the controller's planning capabilities when
doing coarse planning. The predictor was trained before this test while the simulated robot
was exploring the environment with a random walk lasting for 100,000 cycles. As mentioned
the key point here was that the random walk was made up by sequences of a given length of
primitive-actions. In particular 2 primitive-actions with the same direction (e.g. “north-north”)
were used in the first simulation, and 4 primitive-actions (e.g. “north-north-north-north”) were
used in the second simulation. Consequently, the total size of the macro-actions was 0.05 and
0.1 respectively for the two simulations. The predictor was trained to predict the
consequences of these kinds of macro-actions; i.e. the teaching output was the one at the end
of the execution of the 2 or 4 action sequences. In particular, when a macro-action was
executed the predictor's expert of the corresponding primitive-action was trained. For example
if a “north-north” macro-action was executed, the expert corresponding to the “north”
primitive-action was trained. If during the execution of the 2 or 4 action sequences the
simulated robot hit the edge of the arena, the input pattern was used as teaching output.

Figure 11.5: Performance of the coarse planner with two levels of coarseness. Y-axis: number of
actions (or planning cycles) per success for the two levels of coarseness (2 and 4 primitive-actions). X-

axis: cumulated actions. All the curves are averaged over 10 runs repeated with different random
seeds.

Figure 11.5 shows the results of the two simulations, with the two different predictors

(trained with 2 or 4 step macro-actions respectively) and run with the same modalities as the
previous reinforcement learning simulation. Notice that, given the way the predictor was
trained, planning took place at two different levels of coarseness in the two simulations (2 and
4 primitive-actions per macro-action). The graph reports both the number of actions (one per
simulation cycle) per success, and the number of planning cycles (eventually many per
simulation cycle) per success. Recall that the value of the Decay and Gain variables of the
planning algorithm were set at the same value, 0.00001. This was done so that the number of
action executions and planning cycles had the same average and the analysis of the results

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0 10000 20000 30000

Action cycles with planning step 0.05
Planning cycles with planning step 0.05
Action cycles with planning step 0.1
Planning cycles with planning step 0.1

144

was simpler. This is also the reason why the acting and planning plots overlap most of the
time. The initial difference between them is caused by the fact that the initial value of the
variable MaxConfThresh was set at 0.15 (slightly higher than the initial average actions'
probability equal to 0.125) to allow the iterative deepening planning algorithm to reach a
depth of about 50 before the simulated robot started to move. To maintain the consistency of
the discount factor between the primitive and macro level (cf. McGovern, 1998, and s. 13.2.7)
while planning a value of 0.9025 (≈ 0.952) and 0.8145 (≈0.954) was used respectively in the
two simulations.

Why Coarse Planning Works. A first fact that is apparent from Figure 11.5 is that the policy
learned while planning at a coarse level is appropriate for acting at a fine level (this is
confirmed by the simulations shown below, where the controller updates the evaluator and
actor's weights only while planning). This happens for the following reasons.
• In navigation tasks like the one shown here (especially if in open-space) the directions of

the optimal macro-action and of the optimal primitive-action coincide. Here “optimal” is
intended as the macro-action or primitive-action that take toward the goal following a
direct path. As a consequence, if while planning the actor learns to select a particular
macro-action (e.g. “north-north-north-north”) at a particular position, the primitive-action
with the same direction (e.g. “north”) has a high chance of being adequate. Once the
primitive-action is executed and a new position is reached, the actor can produce another
selection that again is likely to be suitable both for the macro and primitive level. If at a
given position the optimal macro-action and the primitive-action differ, the following
time step the error will be corrected by the policy that is suitable to deal with the most
likely outcomes of action execution.

• The use of neural networks allows the controller to generalise. This means that the
controller is capable of yielding appropriate evaluations and action probabilities when
encountering positions never met previously, on the basis of the exploration of similar
positions while planning. This property of neural networks is also useful for planning and
acting at the primitive level (cf. chapter 6), but now it is even more important. In fact with
coarse planning the number of steps spent planning is less than with standard planning
and so is the number of states visited (in simulation mode) before acting. The simulated
experience accumulated by visiting this limited number of states is sufficient because it is
extended to non-visited but similar states by generalisation.

• Notice that although the area that covers the positions recognised as goal could be small,
this does not undermine coarse planning thanks to actions' noise. In fact even if planning
takes place at a coarse level, it can still reach all the points in the arena because of the
actions' noise. In the absence of noise, the simulated robot would visit few points on a
fixed grid, eventually missing the goal area.

The Strength of Coarse Planning. The second fact that emerges from Figure 11.5 is that
planning at the higher level of coarseness causes an improvement of the performance. There
happens for two reasons.

First, exploration with coarse planning covers the whole arena in less time, i.e. less steps
are taken to reach the goal in planning mode. This is shown in Figure 11.6. Here the simulated
robot, set at the start, executes 1000 actions selected randomly. The experiment is repeated
three times with different size of the step: 0.025, 0.05, and 0.1. From the graphs it is apparent
that a bigger step improves the exploration of the environment.

Second, the evaluations are updated more quickly. In fact during coarse planning the
evaluations of states are updated on the basis of the evaluation of a state 2 or 4 steps away.

145

Figure 11.6: Positions occupied by the simulated robot moving 1000 times with random actions from
the start. The steps measure 0.025, 0.05, and 0.1 respectively for the three graphs. The star indicates

the position of the goal.

In order to compare them, Figure 11.7 presents the plots of the reinforcement learning

and planning simulations (only plot of action cycles) in the same graph. The plots have been
smoothed with a moving average over 3000 cycles to ease the comparison. Planning clearly
shows a better performance. Even in terms of total number of cycles (planning cycles plus
action cycles) planning shows its superiority. This can be seen by multiplying by 2 the plots
of planning on the vertical axes (recall that given the settings of the parameters, the number of
cycles spent planning is roughly the same as the number of cycles spent acting).

Figure 11.7: Comparison between reinforcement learning and planning at two levels of coarseness. Y-
axis: number of actions per success, smoothed with a moving average over 3000 cycles. All the curves

are averaged over 10 runs repeated with different random seeds. X-axis: cumulated actions.

11.4.3 Predicting at a Coarse Level

To complete the picture regarding prediction, other simulations have attempted to train the
predictor with steps smaller than 0.05 (0.025, 0.0125, etc.) and have shown that this is not
possible. In fact in these cases the predictor predicts a pattern similar to the input pattern. This

0

1000

2000

3000

4000

5000

6000

7000

8000

0 10000 20000 30000 40000 50000 60000

Action cycles with
reinforcement learning

Action cycles with
planning step 0.05

Action cycles with
planning step 0.1

146

is because after each action the sensory input changes only slightly. Instead the predictor
works well with bigger macro-actions made up of 8 primitive-actions in sequence. Table 11.1
summarises the outcome of the training of the predictor at different levels of planning
coarseness, and reports the error (measured as (Σi[di - oi]2 /n)1/2, where di and oi are the desired
and effective activation of the n output units) averaged over the last 5000 cycles obtained at
the end of training.

Level of coarseness;
size of macro-action

Error of prediction after
100000 training cycles

Outcome of training of
predictor

0.5 ; 0.0125 0.1903 failure
1 ; 0.025 0.1873 failure
2 ; 0.05 0.1967 success
4 ; 0.1 0.2075 success
8 ; 0.2 0.2350 success

Table 11.1: Outcome of training of the predictor at different levels of coarseness.

11.4.4 Coarse Planning, Discount Coefficient and Time Limitations of Reinforcement
Learning

Now the results of a different set of simulations involving planning are shown. They are
directed to understanding the relationship between level of coarseness, discount coefficient
and learning speed. In these simulations the controller does not learn while acting: the actor
and evaluator's weights are updated only while (coarse) planning. This allowed the
exploration of the effects of different discount coefficients during coarse planning, without
having problems of consistency with the discount coefficient used at the acting level. The
results suggest the idea that coarse planning should be independent of the primitive-action
level in terms of discount coefficient used: this should be tuned with the coarseness of
planning, not with the coarseness of action.

Figure 11.8: Planning with different discount coefficients and planning coarseness corresponding to a
0.05 step. Y-axis: number of actions per success. The curves are averaged over 10 runs repeated with

different random seeds. X-axis: cumulated actions.

Figure 11.8 and Figure 11.9 show some simulations that compare, respectively for the

0.05 and 0.1 step levels of coarseness of the planning cases seen previously, the performance

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0 10000 20000 30000

Action cycles with planning
step 0.05 and discount
factor = 0.95 pow 2
Action cycles with planning
step 0.05 and discount
factor = 0.95

147

of the system with a discount coefficient reduced according to the size of the macro-actions
(0.952 and 0.954 respectively, in accordance with the theory of options and macro-actions, cf.
s. 13.2.7) versus the performance with a discount coefficient of 0.95 (independent of the
coarseness). It is apparent from these graphs that a discount factor suited to the level of
coarseness used brings an improvement in the performance.

Figure 11.9: Planning with different discount coefficients and planning coarseness with step 0.1. Y-
axis: number of actions per success. The curves are averaged over 10 runs repeated with different

random seeds. X-axis: cumulated actions.

A further simulation with coarseness of 8 steps per macro-actions (with a macro-action

measuring 0.2) and a discount coefficient set at 0.95, showed that this principle has an upper
limit: the system learned but was quite unstable. The reason for this instability can be
understood observing Figure 11.10. This figure reports the gradient fields of the evaluations
obtained in the two previous simulations (2 and 4 step macro-actions and a discount
coefficient set at 0.95) and the one being discussed here (8 step macro-action). The second
graph reported in the figure shows that almost all evaluations are near the maximum level (i.e.
1) and have a very shallow gradient, while the third graph shows high evaluations without a
defined gradient.

Figure 11.10: From left to right: gradient field of evaluations with planning at three coarseness levels
(macro-actions of 2, 4, and 8 steps). The simulated robot has been set at 20×20 different positions of

the arena, and the evaluation yielded by the evaluator for each of them has been measured. The size of
the white cells is proportional to the evaluation given. The big white cells scattered irregularly in the

graphs are caused by temporary noise of sensors.

0

500

1000

1500

2000

2500

3000

0 10000 20000 30000

Action cycles with planning
step 0.1 and discount
factor = 0.95 pow 4

Action cycles with planning
step 0.1 and discount
factor = 0.95

148

Figure 11.11: Performance with primitive step 0.005 and coarse planning step 0.05 (10 primitive-
actions) with two different discount coefficients (0.95 and 0.9510). Y-axis: number of actions per

success. The curves are averaged over 10 runs repeated with different random seeds. X-axis:
cumulated actions.

In order to further support the idea that the discount coefficient should be tuned with the

coarseness of planning, another simulation has been run where the primitive-actions' size and
simulated robot's diameter were 0.005, and the macro-action used for coarse planning was
made of 10 primitive-actions (a total size of 0.05). The simulations were run two times with
different discount coefficients: 0.95 and 0.5987 ≈ 0.9510 (in accordance with the primitive
level action) respectively. The results (Figure 11.11) show that the first discount coefficient
results in a good performance, while the second discount coefficient makes learning and
behaviour quite “unstable” (cf. Figure 11.12 shows the path followed by the simulated robot
at the end of training in the two situations).

Figure 11.12: Paths followed by the simulated robot with coarse planning and different discount
coefficients (left graph: 0.95; right graph: 0.9510). The stars indicate the position of the goal. The

arrows indicate the tiny simulated robot in the arenas: the size of the simulated robot gives an idea of
the dimension of the robot’s step with regards to the arena.

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

0 20000 40000 60000 80000 100000

Action cycles with plannig
step 0.05 and discount
factor = 0.95

Action cycles with plannig
step 0.05 and discount
factor = 0.95 pow 10

149

Figure 11.13: Evaluation gradient field with primitive-action steps measuring 0.005, coarse planning
of 10 steps, and different discount coefficients (left graph: 0.95; right graph: 0.9510). The black cells

indicate negative evaluations. Big white cells scattered in the graph are caused by noise of the sensors.

The reason for this instability is that the primitive-actions have a very fine granularity, so

the areas far away from the goal should receive a very small evaluation because of the decay
coefficient (100 steps away from the goal, the evaluation should be equal to 0.95100 ≈
0.005920). When evaluations are very close to 0 their differences become extremely small.
Now, the TD-error, on the basis of which the evaluator and actor are trained, is computed as
the difference between the evaluations of two contiguous positions. As a consequence if noise
affects the sensors and function approximation is used to approximate the evaluation and
policy functions, the TD-error signal becomes completely overwhelmed by noise and learning
cannot take place in a proper manner (cf. also s. 6.5 on this). Figure 11.13 demonstrates that
this is the case for the two simulations we are examining. The figure shows the evaluation
gradient fields relative to the two simulations. In the case of a discount coefficient equal to
0.9510 the nature of the gradient appears to be very irregular and close to 0 for positions far
from the goal. This disrupts the TD-error learning signal (this should also be the explanation
for the instability observed in the simulation illustrated in Figure 11.11). Overall these
simulations suggest that a discount coefficient suited to the level of coarseness of actions
improves the functioning of reinforcement learning algorithms.

11.5 Limitations of the Neural Coarse Planner

Coarse planning has some limitations. The way coarse planning has been implemented here
can be applied only to problems domains with certain properties (cf. the conclusion for an
attempt to define these properties).

As we have seen, in open-space navigation tasks the optimal primitive-action and the
optimal macro-action corresponding to a given position share a common direction most of the
times. This assumption is not true in general. For example it would be interesting to analyse to
which extent this assumption holds within a more complex navigation tasks, e.g. one
containing obstacles.

When coarse planning uses a discount coefficient different from the one used at the
action level, the evaluations developed at the two levels are different, so it is not possible,
within the framework about options and macro-actions presented in s. 13.2.7, to use them in
synergy. This weakens the opportunity to exploit the advantages rendered by the use of
different discount rates at different levels of coarseness.

11.6 Conclusion

Coarse Planning. This chapter has presented an empirical investigation of the problem of
planning with macro-actions and acting with primitive-actions. A significant fact apparent
from the simulations is that planning at a level coarser than the level of action execution is
possible and useful. The main problem in doing so is to find a way to allow the two levels to
interface. Given a plan developed at a coarse level, how can its details be specified so as to
implement it at a fine level? Similarly, given some experience accumulated by acting at the
fine level, can it be exploited to plan at a coarse level?

Future research will focus on the possibility of using the same controller with navigation
tasks with obstacles, and on the possibility and utility of using coarse planning for other
“linear” problem domains.

Figure 11.14: An example of another pr
adopted: a robot with a two-joint arm. I

(made of two primitive-actions) and the
would

The present chapter has propose

particular problem domain, that of na
actions made up by small sequences
north-north”). These macro-actions ar
action execution takes place using pri
planning and the primitive level of a
domain and the controller used: (a)
macro-action and the direction of the
of neural networks used by the contro
exploration of the whole state space.

It is important to understand w
Property (b) is guaranteed by the natu
noise or by using actions that bring to
a first analysis it appears that a simila
the effects of the execution of a macr

R
tw

s

be
t

th
Primitive-action
Two-joint arm

Macro-action
Small divergence
tween the direction of
he macro-action and
e direction of the first

primitive-action
150

oblem domain where the solution of macro-actions could be
n this case the divergence of the direction of a macro-action
 direction of its first component primitive-action is small and
 produce acceptable errors.

d and implemented a solution to these problems for a
vigation in open areas. This solution is based on macro-
of primitive-actions of the same kind (e.g. “north-north-
e used to train the predictor and for planning, while the

mitive-actions. The harmony between the macro-level of
cting is guaranteed by three properties of the problem

the (likely) coincidence of the direction of the optimal
optimal primitive-action; (b) the generalisation property
ller; (c) the noise of action execution that guarantees the

hether other problem domains share these properties.
re of the controller. Property (c) is guaranteed either by
 reach all the states. Property (a) is the most delicate. At
r property is guaranteed by all problem domains where

o-action are linear (or close to linear) with regard to the

obot with a
o-joint arm

151

effects of the single component primitive-actions. For example this could be the case of a
two-joint robot arm if the macro-action is made of few primitive-actions (cf. Figure 11.14).

What should be done when we have problem domains that do not allow us to build
macro-actions by simply assembling sequences of primitive-actions of the same kind? A first
answer is given by planning based on logical representations (e.g. Sacerdoti, 1974; cf. s.
2.4.3). Unfortunately we have seen that there are a number of difficulties that make it
impossible to adopt the principles developed in this area of research to design neural network
planners (cf. s. 2.3.3).

A second possible answer is given by the literature about abstraction and options (that
can be applied to Dyna architectures as well; cf. review in s. 13.2.7; see Sutton et al., 1998).
Here the solution is to consider a macro-action (option) as a policy capable of dealing with a
certain number of states. As has already been observed, the research in this field is quite new,
and few results have been obtained so far.

A last observation on the issue of abstraction is that this chapter has focussed on forward
planning only. However, it is straightforward to extend the mechanisms we have explored
here to the bidirectional controller analysed in chapter 9 and 10.

Discount Coefficient and Time Limitations of Discounted Reinforcement Learning. The
simulations of this chapter have also shown another important result: the opportunity to use
different discount coefficients at the coarse and primitive level. In particular they have shown
that the choice of the discount coefficient should be done on the basis of the size of the space
faced by coarse planning itself, and not on the basis of the level of primitive-actions. As we
have seen, this can help the process of planning, but unfortunately it also opens again the
problem of interfacing planning and action.

It is important to notice that the problems caused by a discount coefficient that is not
adequate for the level of coarseness chosen depends on the problems that affect discounted
reinforcement learning when long periods of time are considered. These problems have been
introduced in chapter 6 (cf. s. 6.5). These problems implied that the (optimal) evaluations of
states far (in time and state space) from the goal are very close to zero. If the environment and
the perceptual apparatus of the robot are noisy, the gradient field over these states becomes
completely noisy and cannot guide the policy updating. The experiments of this chapter
confirm, within the new context of abstract planning, that these problems can impair
discounted reinforcement learning severely. These problems are even more important for
abstract planning since it, for its nature, tends to be applied to long courses of action.

152

12 Conclusion and Future Work

12.1 Conclusion: What Have We Learned from This Research?

The goal of this thesis was to implement and investigate predictive planning controllers
implemented with neural networks, inspired by the Dyna-PI architecture, and capable of
controlling a simulated robot in noisy environments. Pursuing this goal, the thesis has
delivered insights that can be organised in six groups. These insights are highlighted and
discussed in the following sections, and then summarised in s. 12.2.

12.1.1 Ideas for Neural-Network Reinforcement-Learning Planning

Part 1 has searched for principles and ideas proposed by blind search, heuristic search and
planning that could be applied to neural-network planners inspired by the Dyna-architectures.
The following ones have been isolated:
• Iterative deepening exploration of the model of the environment. If one has to plan to

reach a goal in a large state space, and if the outcome of the actions' execution is not fully
predictable (stochastic environment), the goal can be searched by executing searches in
depth. To avoid to get stuck in dead-ends or areas of state space too far from the current
state it is necessary to “cut” the search to a given depth, and to iteratively start again from
the current state. These ideas underlie iterative deepening search, and are applicable to
any planner based on the “exploration” of a model of the environment.

• Bidirectional exploration from the start and the goal to focus the evaluations’ updating. If
one has the goal state and knows that the problem domain studied allows backward
search, the strategy of the previous point can be enhanced by searching both from the start
and from the goal in parallel.

• Limits of the concept of policy (universal planners) and need for focussing. The debate
on universal planners is very useful to highlight a crucial limitation of the concept of
policy, namely the requirement to be defined for every possible state. The solution to this
problem is to have partial policies, more accurate for the states that one is more likely to
visit while executing the actions.

• Importance of the balance between the accuracy of the partial policy (conditional
planning) and the possibility of re-planning. If planning is possible, why should we think
about all the possible outcomes of actions' execution in advance? It is better to think about
what to do for the states that are more likely to be encountered and to re-plan when
necessary. This intermediate strategy, “partial policy for the states likely to be visited +
re-planning when necessary”, can be exploited by neural network planners.

The final chapter of part 1 has presented two “unified views”. The first one has tried to isolate
the essential characteristics of learning of behaviour and taskable planning. In particular it has
underlined that taskable planning consists in the reorganisation of “behaviours” through a
search of their possible combinations (action sequences/policies), on the basis of their
capacity to predict the consequences of their execution, in order to achieve a goal (taskability

153

in a strong sense). It has also shown that learning of behaviour requires a reward function to
train the system, and a special “motivational” signal to specify the goal to achieve (taskability
in a weak sense). Even if a system can do planning without being taskable in a strong sense,
strong taskability is probably a fundamental element for planning. In fact it renders planning
flexible and capable of reaching a new goal with improved efficiency from the first time it is
pursued, as compared to reactive behaviour. On the basis of this analysis it has been
concluded that dyna-PI is not taskable in a strong sense. This analysis was necessary because
when building planners with neural networks it is difficult to trace a clear boundary between
learning to achieve multiple “desired” states and planning to achieve goals.

The second unified view has shown that the majority of the neural planning controllers
proposed in literature is based on some form of evaluation gradient field. On one side this has
positive effects for neural planning since neural networks are suitable to implement evaluation
functions. On the other side it raises the question about the possibility of building neural
network planners based on different principles. We have seen that STRIPS planning, using a
different mechanism, “assembles” sequences of actions that lead to the goal on the basis of
the (logical) matching between their preconditions and consequences, and a search of their
possible combinations. Is it possible to find a neural equivalent of this mechanism? A
speculative hypothesis about how to do it, could be the following one. Reciprocal activation
and inhibition between clusters of units, where each cluster corresponds to a macro-action,
could substitute the “matching” between the preconditions and consequences of actions. A
mechanism that brings the activation of the network of clusters to converge towards a
maximum level by “trying” different combinations of clusters (similarly to simulated
annealing?) could substitute the “search” process.

12.1.2 Landmark Navigation, Reinforcement Learning and Neural Networks

The implementation of reinforcement learning with neural networks, applied to landmark
navigation tasks, has produced interesting results. It is well known that reinforcement learning
needs some kind of function approximation to be used for robots' control (e.g. Sutton and
Barto, 1998, p. 193). The experiments of Chapter 6 have confirmed that neural networks are a
powerful function approximation device that can be used for this purpose. In particular the
experiments have shown the kind of generalisation that arises from the sight of the landmarks
in particular directions with respect to the simulated robot.

The controllers designed and implemented in this research have been tested with a
landmark navigation problem. Chapter 6 has shown that generalisation speeds up learning, but
also that it can exacerbate the “perceptual aliasing” problem. The simulations have shown that
for navigation path-finding tasks this problem is particularly impairing if it affects two or
more positions one of which is the goal. In this circumstance the evaluation of the positions
different from the goal, but similar to it, tend to be higher than they should be, and to “attract”
the simulated robot.

12.1.3 A New Neural Forward Planner

Taskability, given for guaranteed in the classic artificial intelligence planning literature (cf.
Allen et al., 1990), relies on general knowledge stored in a “model of the environment” that
can be used to pursue different goals (s. 5.1). The basic Dyna-PI architecture is not taskable.
In fact it requires a model of the environment composed of two parts: one about the
consequences of actions and one about the rewards. In order to build the second component of
the model, the controller needs to reach the goal several times (or alternatively this component

154

of the model has to be furnished by the user/designer). This is the reason why the Dyna-PI
architecture has been used to speed up learning, but not to implement “genuine” predictive
planning (e.g. Sutton, 1990; Lin, 1992).

In order to avoid this problem a new taskable neural planner, inspired by the Dyna-PI
architecture but different from it, has been implemented (“neural forward planner”). The most
interesting aspects of this controller can be described as follows:
• The part of the model of the environment relative to rewards has been eliminated with a

double choice. First, the applicability of the new controller has been restricted to
“stochastic path-finding problems” with one goal, a subset of the “reinforcement learning
problems”. This has made it possible to have only one state with a positive reward (the
goal), while all the other states have reward 0. Second, a “matcher” has substituted the
component of the model related to rewards. The matcher is a neural network capable of
generating a reinforcement signal by comparing the goal with the current input pattern.
This choice represents an important departure from the reinforcement learning approach
from a theoretical point of view.

• The second component of the model of the environment, the state transition function, has
been implemented with a neural network, the “predictor”. The predictor is capable of
autonomously building a model of the environment through experience. This is an
important difference in comparison to the traditional artificial intelligence planners where
the model of the environment is given to the system a-priori (cf. s. 4.5 for some other
examples where the model of the environment is learned). In fact it can be used to
enhance the autonomy of intelligent agents.

• The predictor has the capacity to recover from noise when a long sequence of predictions
is generated (“mental walks”). This capacity is based on an interesting mechanism: the
images corresponding to states of the environment tend to be “attractors” for the
predictor's output. Further investigation is needed to test the robustness of this principle
that is so important for a core function of the planners presented here, the generation of
long sequences of predicted future states.

• The prediction capacity of the predictor can be enhanced by using hardwired modularity,
where each “expert” module is specialised in predicting the consequences of the
execution of one specific action. This principle is important since any powerful hetero-
associative neural network capable of mapping states into states can be used to implement
the predictor. This principle can be applied within any controller that uses a limited
number of actions (cf. also Lin and Mitchell, 1992, on this).

• The forward planner uses a new mechanism to find a balance between “conditional-
planning” and “re-planning” (cf. s. 2.4.4). This mechanism relies on the “confidence” that
the controller has in action, measured as the highest of the actions' probabilities. The
controller plans when the confidence is below a certain threshold and acts when it is
above the threshold. The problem of when acting and when planning has been shown to
be a crucial problem for controllers that incorporate both functions.

• The process of planning is controlled by an algorithm that executes a number of forward
explorations of the model of the environment with increasing depth. At the beginning
these searches follow a random walk, then they become biased toward the goal. This
method is inspired by the idea of “trajectory sampling” proposed in Sutton and Barto
(1998, pp. 246-249; cf. s. 3.4). The algorithm is new in that it regulates the length of the
search so as to: (a) avoid that the planning process gets stuck in dead-ends; (b) focus the
exploration on the critical areas around the start, the goal, and between them.

• Controllers for robots often use different types of knowledge representation to execute
planning and to act reactively (e.g. Arkin, 1989; Gatt, 1992), for example they use

155

STRIPS-like representations to plan and numerical functions to act (cf. Arkin, 1998, for a
review). This approach raises the difficult problem of creating a suitable interface
between the “deliberative” and the “reactive” components of the system (Arkin, 1998, p.
234). The controllers implemented here follow a different approach: both the deliberative
and reactive layers function on the basis of numerical representation and processing of
them. For example the predictor, the core component of the planning process, works on
the basis of neural activation patterns (“images” of the environment). Few other planning
controllers share this feature (cf. s. 4.5 and 2.6 for some examples). This topic touches
issues as the “symbol grounding problem” and the symbolic/subsymbolic representation
problem, long debated in the literature (e.g. cf. Harnad, 1990; Harnad, 1993; Sun, 2000).
Even if these issues are interesting, they have been avoided because outside the scope of
this thesis.

The neural forward planner represents an important departure from the original Dyna-PI
architecture and from the traditional artificial intelligence planners, and hopefully this thesis
has succeeded in showing its potentialities and limitations.

12.1.4 A New Neural Bidirectional Planner

The neural forward planner has a major drawback. When it pursues a goal for the first time, it
explores the model of the environment on the basis of a random walk. This is typical of the
majority of systems based on reinforcement learning. In fact, if no heuristic is available, and if
the environment is stochastic and a systematic exploration of it is not possible, this is one of
the few alternatives available (cf. Thrun, 1992, for a review of other techniques that use the
frequency of visit of action-state pairs to bias exploration). However, in the case of the neural
forward planner the fact that the controller is applied to stochastic path-finding problems
makes the goal state available to the controller. This can be used to explore the model of the
environment backward from the goal. The new controller proposed in chapter 9, the “neural
bidirectional planner”, exploits this possibility. The neural bidirectional planner is different
from the neural forward planner in the following aspects:
• A “back-actor” has been added to the controller. This is a neural network capable of

selecting actions in order to generate backward explorations from the goal. This neural
network is trained to select actions so that the backward searches quickly “escape” from
the goal. A “back-predictor” has been added to the controller. This is a neural network
that, together with the back-actor, is used to generate backward explorations.

• The controller alternately generates forward explorations from the current state, and
backward explorations from the goal.

The neural bidirectional planner maintains the strengths of the neural forward planner and has
also two advantages in comparison to it. The first is that it is superior in terms of exploration
because it “finds” the goal immediately. The second is that it is superior in terms of
propagation of the evaluations away from the goal because it updates evaluations on the basis
of states whose evaluations have just been updated. These advantages become more important
when the size of the problem space increases.

Unfortunately the bidirectional planner also has some drawbacks. In particular it is not
clear to which problem domains different from navigation it is applicable, and it has a
complex architecture and functioning. A new “goal oriented forward planner” has also been
proposed (but not implemented) that may have the simplicity of the forward planner and some
of the strengths of the bidirectional planner. This might be tested in the future.

Bidirectional planning represents a further step in focussing evaluation updating while
planning on relevant states. Focussing has a crucial importance for reducing the time

complexity of algorithms inspired by the Dyna-architectures. By referring to a navigation
task, Figure 12.1 graphically summarises all the steps that have been done in this direction: (a)
using planning only when necessary on the basis of the controller's confidence, and acting
otherwise; (b) using sample backups instead of full backups; (c) using trajectory sampling (d);
searching forward from the start (or current state); (e) searching backward from the goal.

Figure 12.1: Graphical sum

12.1.5 Common Structure

Neural networks' generalis
solving different tasks, and
Unfortunately, this propert
generalisation and limiting
on neural networks.

In order to study thi
different goals are pursue
introduced in chapter 7. Th
shown that interference sl
explored the utility of mo
particular it has proposed a
critic architecture, namely:
evaluator (this is a novel ap
architecture is used to im
produced the following pos
• By using modularity th

the generalisation pro
learning tasks, for exam
to control a simulated
desired trajectory. Ho
problem is new.

• The evaluator's modula
while the actor's modul
different levels of spec

Planning-acting on
the basis of agent's

confidence

t

Focussing by
backward

search

Focussing by
forward search

s

State space
Star
156

mary of the steps followed to minimis
focus planning backups on relevant st

, Interference, and Modular Netw

ation property allows controllers
 to overcome problems such as th
y also causes interference problem
the problem of interference is a cr

s problem an asynchronous mult
d in distinct non-overlapping lon
e experiments of chapter 7 with m
ows down their learning speed se
dularity for keeping the interfere
 controller with two new features in
(a) a mixture of experts neural ne
plication of this neural network); (b
plement the actor. The experime

itive results:
e controller limits the problems ca
perty. This result have already
ple Jacobs and Jordan (1991) use

two-joint robot arm with a variety
wever, the application to a mul

r architecture uses different modu
ar architecture shows a fuzzy speci
ialisation of the evaluator and acto

Goal
Focussing by sampling backup
Focussing by trajectory
e the time spent planning and to
ates

orks

to compress information when
e large size of the state space.
s. Preserving the advantage of
ucial target for a system based

i-goal navigation task, where
g periods of time, has been
onolithic neural networks have
verely. The same chapter has

nce problem under control. In
 comparison to the basic actor-

twork is used to implement the
) a novel two level hierarchical
nts with this controller have

used by interference and keeps
been achieved for supervised
d a mixture of experts network
 of payloads, moving along a

ti-goal reinforcement learning

les to deal with different goals,
alisation. It is not clear if these
r have been influenced by their

157

different role played within the system or by the different algorithms used to train them
(supervised learning and unsupervised learning guided by the reward signal respectively).

From these experiments it appears that modularity can make an important contribution to
exploiting the advantages rendered by the generalisation property and to avoiding interference
at the same time. From the experiments it also appears that a key aspect for the successful
application of modularity is the functioning of the “gating mechanisms”. These are the
mechanisms that decide when two different input-output associations share “enough common
structure” and can be handled by the same module, and when they do not and have to be
handled by different modules. Further research needs to focus on this aspect (cf. Ramamurti
and Ghosh (1997) for the possibility of implementing the gating network with a local function
approximator that should facilitate the specialisation of the experts).

Chapters 10 has extended the investigation on modularity by integrating the modular
version of the actor-critic architecture just considered, and the planning controllers described
in chapter 8 and 9. The tests with the modular planning controllers have produced positive
results:
• The planning controllers are capable both of generalising and of limiting the negative

effects of interference.
• The planning controllers retain the positive strengths shown when dealing with single-

goal tasks: taskability, accumulation of experience, capacity to focus exploration.
These tests were necessary because planning focuses on the same goal for long periods of
time, and this can augment interference problems. Overall, chapters 10 should have given
enough evidence that interference is an important problem for neural network planners, and
that modularity may offer a solution for it.

12.1.6 Coarse Planning and Time Limits of Reinforcement Learning

The benefits of abstractions are well known in the classic artificial intelligence literature. How
can abstract planning be implemented with neural networks? Chapter 11 has proposed and
implemented a “coarse-planner”, based on the neural planner introduced in chapter 8, that
gives a first simple solution to this problem. The coarse planner executes planning on the
basis of “macro-actions”, defined as sequences of primitive-actions with the same nature (e.g.
“north-north-north-north”), and then selects and executes primitive-actions in the
environment. The simulations with the coarse planner have produced the following results:
• The policy and the evaluations generated when planning at a coarse level are suitable for

controlling action at a primitive level. This is possible because the “direction” of the
optimal macro-action and the optimal primitive-action for a given state and goal, tend to
be the same.

• Thanks to the generalisation property of neural networks, the controller is capable of
dealing with states that have not been considered while planning at a coarse level but are
similar to those that have been experienced (this capacity is also exploited while doing
planning at the primitive level). Moreover, the noise that affects actions allows the
planner to explore all possible states while training the model of the environment.

• Coarse planning shows a better performance than planning executed at a primitive level.
The reason for this is that coarse planning allows a quicker exploration of the whole state
space and a faster diffusion of the evaluations between different regions of the state space.

Unluckily coarse planning appears to be applicable only to domains where the effects of
actions' execution are approximately linear. How to implement more general forms of abstract
planning with neural planners remains an open question.

158

Chapter 11 should have shown that there might be original ways to implement abstract
planning with neural networks that are different from the ones proposed in the classic
planning literature. It should also have shown that, within the context of neural-network
Dyna-inspired controllers, abstraction might produce unexpected and different advantages
that add to the known ones.

Time Limitations of Reinforcement Learning. In comparison to reactive behaviour,
planning, and in particular abstract planning, expresses its full potentiality when it is extended
over long periods of time. The investigation of coarse planning (chapter 11) has re-examined
an important limitation of discounted reinforcement learning (introduced and investigated in
chapter 6) from a different perspective. The limitation is that in discounted reinforcement
learning evaluations drop exponentially for states progressively more distant (in time) from
the goal state, and so they are close to 0 for states very far from it. Given that the one-step
learning signal is built on the basis of the difference between two of these evaluations, and
given that with function approximation and robots with noisy sensors and effectors the
evaluations are affected by noise, this learning signal is low and noisy itself. This can severely
disrupt the process of learning of the policy. Notice that the slow rate of learning of
reinforcement learning in problems where the start is far from the goal, is usually attributed to
the number of states separating them, or to problems of exploration, not to an intrinsic
limitation of discounted reinforcement-learning (e.g. see Thrun, 1992).

By using macro-actions with different time-length, the experiments with coarse planning
have shown that the reinforcement learning's time limitations just described have important
negative effects on planning. A solution has been implemented that is based on using different
discount coefficients for planning and for action. Unfortunately this solution causes problems
to the interface between planning and acting. The conclusion is that time limitations of
discounted reinforcement learning need further investigation and adequate solutions if we
want to use such type of reinforcement learning to deal with long lasting tasks.

12.2 A List of the Major “Usable” Insights Delivered

This research has shown that it is possible to build interesting neural planners inspired by the
Dyna-PI architecture. In particular the thesis has explored this possibility by proposing a
novel neural forward planner, a novel bidirectional planner, a novel modular neural-network
version of these two planners, and a novel coarse planner. The investigation of these planners
has delivered several insights that can be used when implementing planning with neural
networks within the Dyna-architectures framework. The most important insights can be
summarised as follows (in order of presentation in the chapters):
• Some principles proposed by blind search, heuristic search, and planning can be exploited

to build neural networks planners inspired by the Dyna-framework. Some of these have
been isolated and suitably adapted to be applied to neural controllers: iterative deepening
exploration of the model of the environment; bidirectional exploration from the start and
the goal to focus the backups; limits of the concept of policy (universal planners) and
need for focussing; importance of the balance between the accuracy of the policy
(conditional planning) and the possibility of re-planning.

• The majority of the planning algorithms that can be (or have already been) implemented
with neural networks, are based on the construction of some form of evaluation gradient
field increasing (or decreasing) toward the goal.

159

• Discounted reinforcement learning has severe limitations when behaviours with a long
time-horizon are considered. These limitations have to be solved if one wants to develop
successful planning systems based on reinforcement learning.

• The aliasing problem has been confirmed to be particularly impairing for reinforcement
learning based navigation when it involves the goal states.

• The generalisation capacity of neural networks has been confirmed to be crucial in
dealing with noise and in reducing the curse of dimensionality problem deriving from big
state spaces. However, it also has been shown that it causes the undesired effect of
catastrophic interference. One way of facing catastrophic interference is to use mixture of
experts networks for the evaluator and a hierarchical modular neural network for the
actor. This solution works both for reinforcement leaning and for planning.

• The Dyna-PI architecture is not taskable in a strong sense because when a new goal is
assigned to the controller, it needs experience with that goal to acquire the reward
component of the model of the environment relative to it. A solution is to limit the
applicability of the architecture to shortest-path problems and to use a device, such as the
matcher, to “generate internally” the reward signals.

• When planning, the learning capacity of neural networks allows planning controllers to
acquire a model of the environment autonomously (predictor). The experiments have
furnished some data about how hard it is for the landmark navigation task studied here,
and have shown that hardwired modularity, based on the available actions, can help the
process of learning.

• When iterating the predictions to generate simulated walks the neural model of the
environment (predictor) has an interesting capacity to recover from noise since the images
corresponding to the environment states tend to be “attractors” for the states predicted.

• The neural model of the environment is the most delicate component of the controllers
proposed, and probably of any planner based on neural networks.

• For an autonomous robot it is crucial to plan and re-plan when necessary, and to act
reactively the rest of the time. The decision of when to act and when to plan can be based
on the controllers' “confidence”, built on the basis of the probabilities assigned to the
actions by the reactive components in a given state.

• A method has been proposed for implementing backward planning with neural Dyna-PI
architectures. Backward planning, together with forward planning, allows the controller:
(a) to focus search around the goal, the start, and the states between them; (b) to quickly
diffuse the evaluations.

• A way to implement a simple form of abstract planning with neural networks, “coarse
planning”, has been proposed. The linearity of problems, the noise of actions, and the
generalisation capacity of neural networks help to interface planning at a coarse level and
acting at a fine level. Coarse planning improves exploration and evaluation updating.

The hope is that these insights will be helpful to further develop the investigation of neural-
network predictive planners in general, and those inspired by the Dyna-PI architecture in
particular.

12.3 Future Work

The experiments run have shown several interesting directions along which the investigation
of the neural planners proposed in the thesis might continue. Some of these have been
indicated in the s. 12.1. Here the most interesting remaining ones are analysed.

160

Simulated and Real Robots. This thesis has chosen to work with simulated robots and tasks
to speed-up and ease the preliminary analysis of several aspects of the controllers proposed
(cf. s. 1.1.2). The range of exploration of the thesis would have not been possible had a real
robot and more complex tasks been used. This is a common practice (cf. Sutton and Barto,
1998; Arkin, 1998). Now that a lot of knowledge has been gathered on the general behaviour
of the controllers proposed, it has become important to test the same controllers with real
robots and more difficult tasks. In this case, it is likely that the following problems would
arise:
• Limits of the predictor. It is likely that the predictor will show to have strong limitations

when dealing with a more complex environment. Could modularity help? Modularity
could be based on different actions or refer to different areas of the problem space.

• Aliasing problem. The next header considers this point in detail.
• Abstract planning. When the problem space is big and requires a prolonged activity,

abstraction (over the details of actions and over time) becomes very important.
• Modularity to avoid interference and to allow a more flexible behaviour. When the task

requires a large number of activities, modularity can help to deal with interference and to
enhance the flexibility of the system (i.e. to use the same modules/actions for different
tasks).

Aliasing Problem. For this thesis it has been decided to use a very simple “feature extractor”
(it executed the extraction of “visual contrasts”) in order to speed up the simulations, given
that the focus of the thesis was not the efficiency and scalability of the system (cf. s. 6.4.5).
We have seen that this choice is one of the main causes of the aliasing problem observed in
the simulations, since the simple feature extractor recodes the input image into contrast
images that have many overlapping features. The aliasing problem limits the effectiveness of
the controller. Now that the main behaviour of the controller has been studied, it would be
interesting to address the problem by using one or more of the following solutions:
• Adding/using sensors that allow the system to disambiguate similar states (this solution

might incur in the problem of enlarging the state space).
• Rethinking the architecture of the neural networks used to make up the planners so that

they can use non-overlapping internal representations for states to be associated with
different evaluations and actions (the simple two-layer networks used had few degrees of
freedom). In literature a large number of solutions have been proposed to achieve this
result. Just to mention some: radial-basis function networks (Sutton and Barto, 1998;
Haykin, 1999), growing radial-basis function networks (e.g. Samejima and Omori, 1999),
Kanerva coding (Kanerva, 1988; Sutton and Whitehead, 1993), CMAC (Albus, 1981;
Miller et al., 1990; Wiering et al, 1998).

• Using other kinds of reinforcement learning techniques that the literature is currently
investigating (cf. Singh et al. 1994; Jaakkola et al., 1995; Lorincz et al., 2001; Wiering
and Schmidhuber, 1998) that have been shown to have some potentialities with tasks
made difficult by the aliasing problem.

Interference and Modularity. The problem of interference and modularity is connected
related to the previous one. Chapters 7 and 10 have shown that modularity is a promising idea
that can be used to limit interference and to improve the scalability of the controllers. The
chapters have also suggested that the major limitation of the modular controllers proposed
here is the interference that happens at the level of the evaluator's gating network (cf. s. 7.5).
This limits the capacity of the evaluator to use different experts when necessary. A solution to

161

this problem could be the application of the architecture proposed by Ramamurti and Ghosh
(1997) that is based on a gating network that implements a local function approximator.

A related issue is the possibility that the mixture of experts network is too rigid and not
capable of discovering “structure” common to different problems. We refer the reader to s. 7.6
for a discussion of this issue that may be the object of future investigation.

Learning the Model of the Environment and Acting. Throughout the thesis, the controllers
have learned the model of the environment before being tested. This raises the question of
what would be the behaviour of the controllers if the model of the environment had to be
learned while acting. The architecture as it is now would not work, because the controller
would never reach the proper threshold of confidence. A possible solution would be a varying
threshold that drops if the planning activity fails to increase the confidence after some time,
and remain low for a considerable amount of time during which the controller acquires
experience about the environment. An alternative would be to build some measure of the
quality of the model of the environment, and base the planning activity on such a measure.

Acting-Planning Controller. The idea of basing the decision about when to plan and when to
act on the controller's confidence compared with a threshold can be further investigated. For
example the threshold could vary on the basis of some measures of the “urgency” of action, or
could vary on the basis of some measure of the costs of the consequences of “wrong” actions.

Simplifying the Architecture. The architecture of the planners proposed is rather complex,
especially the one of the modular bidirectional planner. As mentioned there is the possibility
of integrating the predictor and the back-predictor, and maybe the actor and back-actor.
Moreover s. 9.6 has proposed a planner with an architecture whose complexity is comparable
with the complexity of the forward planner’s architecture, but that shares some strengths with
the bidirectional planner.

Improving Coarse Planning. Coarse planning has been shown to have many potentialities.
New investigations should verify if it is possible to extend the kind of coarse planning
presented here to problem domains different from navigation. The literature on reinforcement
learning has just started to tackle this problem, but with little success so far (cf. s. 13.2.7).

Limitation of Discounted Reinforcement Learning, Sub-Goals. The results of this research
suggest that discounted reinforcement learning is limited in its time scope, and so is any form
of planning based on it. Planning, and especially coarse planning, expresses its full power
versus reactive behaviour when it can be applied to big chunks of behaviour and long periods
of time. The implication is that solutions need to be found for this problem if one wants to
build successful planners on the basis of reinforcement learning. As shown here, one
possibility to overcome this problem is to use abstraction, where each “step” of the abstract
level covers a longer period of time than a step at the “primitive” level (cf. also Linaker,
2001). Another interesting possibility is to “break” long behavioural sequences into parts on
the basis of sub-goals. Each sub-goal would possess its own gradient field and policy. The
“summation” of more sub-goals would lead to the final goal (e.g. cf. Wiering and
Schmidhuber, 1998).

162

13 Appendices

Appendix 1

13.1 Blind-Search and Heuristic-Search Strategies

This appendix reviews some major blind-search strategies and heuristic-search strategies
(Korf, 1988). The quality of these strategies is evaluated through the following criteria:
• Completeness and optimality. These are two criteria used to evaluate the quality of

different search strategies. A strategy is complete if it guarantees to find a solution in the
case that there is one. Optimality is a measure of the quality of the solution found in terms
of its cost. A search strategy is “optimal” if it finds the solution with the lowest cost
among all the possible solutions.

• Time complexity and space complexity. Time complexity and space complexity are
respectively the measures of the time and memory that the search strategy needs to
perform the search. Usually a “complexity asymptotic analysis” and a O[.] notation is
used to give an approximate measure of these complexities (cf. Russell and Norvig, 1995,
pp. 851-853). O[.] indicates the approximate number of steps taken by the algorithm to
process the input. Roughly speaking, this number is based on one or more parameters
(arguments of the function O[.]) that describe the size of the algorithm's input space,
abstracts over small constant factors, and is based on “pessimistic” values of the input
space parameters. This concepts will appear clearer with the examples given below.

13.1.1 Blind-Search Strategies

Breadth-First Search. In this search strategy the root node is expanded first, then all the
nodes generated in this first step are expanded, then all the nodes generated in this second step
are expanded, and so on. Breadth-first search is complete and optimal. If we assume a
branching factor b (the average number of branches for each node), and that the solution of
the problem has a path of length d, then the time and space complexity of the strategy is
O[bd]. This makes breadth-first search exponentially expensive with d in terms of memory
and time. This implies that the worst drawback of this search strategy is space complexity.

Uniform Cost Search. This search strategy is similar to the previous one, but now the
strategy expands the lowest-cost node s on the fringe, as measured by the path cost g(s) from
the initial state to s. This strategy is complete and optimal. It has time and space complexity
similar to those of breadth-first search.

Uniform Cost Search from the Goal. This search strategy is similar to uniform cost search.
The difference is that it expands the lowest-cost nodes starting from the goal instead of the
initial state. This search strategy is usually not directly mentioned in the literature. It can be
considered part of the bidirectional search (see below) if costs are taken into account. Here it

163

is reported explicitly because it is useful to build a unified view of planning methods based on
“evaluations” (cf. s. 5.2).

Depth-First Search. This search strategy expands the nodes at the deepest level of the tree,
i.e. until the goal or a dead end is reached, and then backtracks. This search strategy is neither
complete, because it can get stuck in branches with infinite length, nor optimal, because it
may achieve the solution through a long path before having tried the shorter ones. If m is the
maximum depth, then depth-first search has O[b×m] space complexity and O[bm] time
complexity.

Iterative-Deepening Search. This search strategy (Korf, 1985a) combines the benefits of
breadth-first search and depth-first. It consists of a depth-first search with a limited depth. The
depth starts with a depth of 1 expansion and is iteratively increased by 1. It is complete and
optimal. The number of state expansions is wasteful as some states are expanded multiple
times. However, this implies little computational inefficiency, as the biggest consumption of
computation is caused by the last nodes so that its time complexity is O[bd] as for breadth-first
search. However, it is very efficient with regards to memory: its space complexity is O[bd].

Bidirectional Search. This search strategy (Doran, 1966; Pohl, 1971) is based on the
simultaneous expansion of nodes both forward from the initial state and backward from the
goal with one of the previous search strategies. It stops when the two searches meet in the
middle. It is complete and optimal. This search is very efficient in terms of time complexity
given that the depth of the solution is cut by 2: its time complexity is O[bd/2]. Its space
complexity is O[bd/2] since the outcomes of one of the two searches have to be retained in
memory to detect if the two searches have met. Two problems with bidirectional search are
that: (a) to be applicable it must be possible to produce a search backward from the goal
(backward operators); (b) it implies difficulties if many goal states are considered.

13.1.2 Heuristic-Search Strategies

Greedy Search. Greedy search implies that the nodes with the least estimated cost h[s] to the
goal are expanded first. The greedy search is not optimal and is not complete because it can
go down an infinite path and never return back. Its time and space complexity are O[bm]
where m is the maximum depth of the search space.

A* Search. This search strategy (Hart et al., 1968) is probably the most popular heuristic-
search strategy. It combines the advantages of uniform cost search and greedy search. It
expands the nodes that have the minimum sum of path cost plus expected cost to goal: f[s] =
g[s] + h[s]. The only restriction that it requires is that h[.] is “admissible”. A heuristic function
is admissible if it is optimistic, in the sense that it never overestimates the cost to the goal. It
has been demonstrated (Dechter and Pearl, 1985) that A* search is complete and optimal.
Unfortunately, even if A* provides enormous computational savings compared to blind-
search strategies, its time complexity still grows exponentially with d, the distance from the
goal, for the majority of heuristics of practical importance. However, space complexity is the
main drawback of A* (but see below) because it needs to keep all generated nodes in
memory.

IDA* - Iterative Deepening A*. IDA* search (Korf, 1985b) is a variant of A* that
diminishes the memory requirements of A* search. It is basically a limited-depth-first search.

164

In IDA* the depth is limited on the basis of increasing fixed values of f[.], instead of the
number of nodes of the explored path as in the limited-depth-first search. As A* search, IDA*
search is complete and optimal. Its space complexity is O[bd]. Its time complexity depends on
the number of values assumed by f[.] during the search. If n is the number of nodes expanded
by A*, then, in the worst case when f[.] assumes a new value for each node expanded, the
time complexity of IDA* search is 1 + 2 + 3 + … + n = ((n+1) n) / 2 = O[n2].

Learning Real-Time A*. LRTA* (Korf, 1990; Jokoo and Ishida, 1999) allows agents to
interleave planning and execution (hence “real-time”). The agent experiences the problem
many times (trials), during which it updates (learns) the estimate of the heuristic h[.]. At each
time step the agent repeats the following procedure:
• Lookahead. Calculate f[j] = k[i, j] + h[j] for each neighbour j of the current node i, where

k[i, j] is the cost from i to j and h[j] is the current estimate of the shortest distance from j
to one goal node.

• Update. Update the estimate of node i as follows: h[i] ← minj[f[j]].
• Action selection. Move to the neighbour j that has the minimum f[j] value. Ties are

broken randomly.
LRTA* is complete under the assumptions that: h[.] are initially non-negative and admissible;
each link has positive costs; there exist a path from every node to a goal node. It is also
optimal over repeated problem solving trials, i.e. the values h[i] converge to their actual true
values h*[i] computed as the cost of the optimal path from i to one goal node. Notice that if
no heuristic is available, the initial h values can be set at 0. In this case what will happen is
that with repeated updates the h values will grow starting from the ones around the initial state
and will create a wave-front of values decreasing from the initial state toward the goal.
Through repeated trials this wave front will eventually reach the goal and the algorithm will
build the correct heuristic function to reach the goal through the an optimal path.

165

Appendix 2

13.2 Markov Decision Processes, Reinforcement Learning and Dynamic
Programming

13.2.1 Markov Decision Processes

Markov decision problem. The main aspects of “Markov decision processes” are now
presented (cf. Puterman, 1994, for details). A Markov decision problem implies that a
learning agent interacts with an environment at some discrete time steps t = 1, 2, 3, … . On
each time step t the agent perceives a state of the world st ∈ S, and on the basis of this it
selects an action at ∈ A. The environment produces a numerical reward rt+1 and a next state
st+1 in response to each action at executed by the agent. The dynamics of the environment can
be modelled by one-step “state-transition probabilities” defined as follows:

 pa

ss' = Pr[st+1 = s' | st = s, at = a] ∀ s, s' ∈ S ∀ a ∈ A Eq. 13.1

and “one-step expected reward” (a stochastic variable whose probability distribution depends
on s, a and s'):

 ra

ss' = E[rt+1 | st+1 = s', st = s, at = a] ∀ s, s' ∈ S ∀ a ∈ A Eq. 13.2

These two sets of quantities together constitute the “one-step model of the environment”. In
functional terms the “model of the environment” is composed of two functions, the
“transition-probability function” and the “reward function”. The model’s transition-
probability function, MTP, maps the current state st, the current action at and a next state st+1
into the probability of having that particular next state:

 MTP: S × A × S → [0, 1] Eq. 13.3

When the environment is deterministic, then this part of the model maps the current state

st and the current action at into the next state st+1:

 MTP: S × A → S Eq. 13.4

The model’s reward function, MR, maps the current state st, the current action at, the next

state st+1 and the expected (average) reward ra
ss', into the probability of obtaining this reward:

 MR: S × A × S × ℜ → [0, 1] Eq. 13.5

In the simpler cases in which a particular reward is deterministically associated with each

state, the reward function becomes:

 MR: S → ℜ Eq. 13.6

166

This case is relevant when we want to frame the problems involving the achievement of a

goal with Markov Decision Processes (cf. s. 3.1).
The agent's objective is to learn a “policy” π, i.e. a mapping from states and actions to

probabilities (“actions' probabilities”) of selecting each particular action:

 π: S × A → [0, 1] Eq. 13.7

Notice that when the policy “converges”, the probabilities tend to be either 0 or 1, and the
policy becomes deterministic (but cf. Jaakkola, 1995).

In the case of deterministic action policies, the policy is a direct mapping from the states
to the actions:

 π: S → A Eq. 13.8

The State Evaluation Function Vππππ[s]. For each state s a “state evaluation function” Vπ[s] is
defined that depends on the policy π and is calculated as the sum of expected discounted
future rewards starting from t+1:

 Vπ[s] = E[rt+1 + γ rt+2 + γ2 rt+3+ …| st = s] =

= E[rt+1 + γ (rt+2 + γ rt+3+ γ2 rt+4 + …) | st = s] =
= Σa∈A[π[a, s] Σs'∈S[pa

ss' (ra
ss' + γ E[rt+2 + γ rt+3+ γ2 rt+4 +…| st+1 = s'])]] =

= Σa∈A[π[a, s] Σs'∈S[pa
ss' (ra

ss' + γ Vπ[s'])]]

Eq. 13.9

where π[s, a] is the probability that the policy selects a in s, E[.] is the mean operator, and
γ∈[0, 1] is a “discount coefficient”. The last of the Eq. 13.9 is the “Bellman equation”
(Bellman, 1957). The agent's aim is to find an “optimal policy” π* that maximises Vπ[s] for
all s ∈ S. A policy is defined “optimal” if it yields the “optimal state evaluation function”
V*[.]:

 V*[s] = maxπ Vπ[s] = maxa Σs'∈S[pa

ss' (ra
ss' + γ V*[s'])]

∀ s, s' ∈ S ∀ a ∈ A
Eq. 13.10

that is called “optimal Bellman equation”.

Notice that if the model of the environment is known (transitions probabilities and
expected reward), if we treat Vπ[.] as unknowns, then the set of Bellman equations for all s∈S
forms a system of |S| equations in |S| unknowns whose unique solution are the values of Vπ[.].
Some reinforcement learning methods (Sutton and Barto, 1998; cf. s. 13.2.4) and dynamic
programming methods (Ross, 1983; Bertsekas, 1995; cf. s. 13.2.9) estimate these values
through iterative algorithms.

The State-Action Evaluation Function Qππππ[s, a]. A parallel set of value functions for state-
action pairs, rather that for states, is particularly important for learning methods. The value of
taking action a in state s under policy π, denoted by Q[s, a], is the expected discounted future
reward starting in s, taking a, and henceforth following π:

 Qπ[s, a] = E[rt+1 + γ rt+2 + γ2 rt+3+ …| st = s, at = a] =

= Σs'∈S [pa
ss' (ra

ss' + γ Vπ[s'])] =
= Σs'∈S [pa

ss' (ra
ss' + γ Σa'∈A[π[s', a'] Qπ[s', a']])]

Eq. 13.11

167

Qπ[s, a] is known as the “action-evaluation function” for policy π, and the last formula is

the “Bellman equation” for it. The optimal “action-evaluation function” Q*[s, a] and the
corresponding “optimal Bellman equation” are:

 Q*[s, a] = maxπ [Qπ[s, a]] = Σs'∈S [pa

ss' (ra
ss' + γ V*π[s'])] =

= Σs'∈S[pa
ss' (ra

ss' + γ maxa' Q*[s', a'])] ∀ s, s' ∈ S ∀ a, a' ∈ A
Eq. 13.12

Notice that if the transition probabilities are known (transitions probabilities and expected

reward), and if we treat Qπ[.] as unknowns, then the set of Bellman equations for all the states
s∈S forms a system of |S| equations in |S| unknowns whose unique solution are the values of
Qπ[.]. Some reinforcement learning methods (cf. s. 13.2.4) estimate these values through
iterative algorithms.

13.2.2 Markov Property and Partially Observable Markov Decision Problems

The whole theory of Markov decision processes is based on the assumption that the problem
faced by the agent satisfies the “Markov property”. This assumption implies that the
information contained in the signal of a state s carries a complete description of the
environment at that moment: no memory of previous states or actions selected is needed to
generate the perfect transition probabilities and rewards. Formally this is expressed in the
following way:

 Pr[st+1 = s', rt+1 = r | st, at, rt, st-1, at-1, rt-1, st-2, at-2, rt-2, …] =

Pr[st+1 = s', rt+1 = r | st, at] ∀ s', r, st, at, rt, st-1, at-1, rt-1, …
Eq. 13.13

In the majority of practical problems, the Markov property does not hold. In fact the

agent knows the state of the environment through a sensorial apparatus that returns limited
and noisy information about the current state of the environment. For example a camera of a
robot returns information about a limited part of the environment surrounding the robot, with
a limited definition, etc. In the scenario used in this thesis (cf. s. 6.2) the robot perceives the
environment through sensors that return a feature-like pattern, i.e. a vector of real numbers x,
in correspondence to each state s. This can be considered a quite general case, where the
agent is not allowed to directly observe the state of the environment but can receive
“messages” from it that contain information about its state. At each time t an observable
message x is drawn from a finite set of messages X according to an unknown probability
distribution Pr[x|s] (cf. Jaakkola et al., 1995). Notice that it is possible that different states s
form S are mapped into the same message x. This problem, named the “perceptual aliasing
problem”, is particularly impairing because the “agent's internal representation confounds
external world states” (Whitehead and Ballard, 1991).

An environment for which the Markov property does not hold is said to be “partially
observable” or “inaccessible” (cf. also s. 2.4), and to generate “Partially Observable Markov
Decision Problems” (POMDP). When reinforcement learning methods are applied to a
partially observable Markov decision problem they may still work, and their performance
degrades gracefully as the degree of “non-Markovianness” increases, but this is not
guaranteed (Singh et al., 1994). Some solutions have been proposed to deal with these
problems. The majority of these solutions have attempted to combine some forms of estimate
of states with learning. The internal representation of the state is built by combining current
sensor readings with the memory of past internal representations and readings. For example to

168

this end recurrent neural networks have been used (e.g. Lin and Mitchell, 1992) or probability
distributions over underlying states (e.g. Sondik, 1978; McCallum, 1993). A second approach
has attempted to use “active perception”, i.e. actions directed to gather further information to
disambiguate the states (e.g. Whitehead and Ballard, 1990). Another approach has proposed a
system that uses the current sensorial information only, and searches between stochastic
policies rather than between deterministic policies. This approach has been suggested by the
result that for some partially observable Markov decision problems, memory-less stochastic
policies are significantly better than any memory-less deterministic policy (Singh et al., 1994;
Jaakkola et al., 1995). All these solutions are currently under investigation and each have
several drawbacks, so partially observable Markov decision problems are still a fully open
chapter of reinforcement learning research.

The scenario used to test the algorithms proposed in the thesis and introduced in s. 6.2
involves a partially observable environment. In s. 6.4.3 some negative consequences that this
environment produces on reinforcement learning are shown. These problems have been
tolerated and not directly tackled in this research, because the focus was on different issues,
i.e. planning with reinforcement learning and neural networks.

13.2.3 Reinforcement Learning

Reinforcement learning methods (Barto et al., 1983; Kaelbling et al., 1996; Sutton and Barto,
1998) attempt to find a policy that solves Markov decision problems in two phases (usually
carried out in parallel, as we shall see). In the first phase they build up the evaluations of the
states, or the state-action pairs. We have seen in s. 13.2.1 the definitions of the evaluations in
these two cases. It is worth stressing that once these evaluations are built, they form a gradient
field over the state space. This gradient field has high evaluations for states that are “close”
(in terms of number of actions that need to be executed) to the states with relevant positive
rewards, and low evaluations for states far from them. For example in the case of the
stochastic path-finding problems, the level of evaluations increases going toward the goal.
Similarly, the evaluations of the gradient field are low (and negative) for states that are close
to states with relevant negative rewards. The second phase exploits this gradient field to build
up the policy that leads to states with positive rewards and away from states with negative
rewards, as quickly as possible.

13.2.4 Approximating the State or State-Action Evaluations

Updating the Estimates of Vππππ[s]. If we assume we have a policy π that leads to exploration
of the different regions of the problem space (for example, for now, suppose we have a
random walk policy), it is possible to progressively find more accurate estimates of the
evaluation function Vπ[s]. This can be done by using an iterative approximation rule based on
the Bellman equation Eq. 13.9. In particular when a state is visited, the following updating
rule can be applied to the estimate V'π[s] of Vπ[s]:

 V'π[st] ← V'π[st] + η ((rt+1 + γ V'π[st+1]) - V'π[st]) Eq. 13.14

This rule is called “TD(0)” (Sutton and Barto, 1998, p. 134), where TD stands for “Temporal
Difference”. “0” indicates that the updating rule considers two succeeding steps only. In this
research only this case is considered, and the so called “TD(λ) rule” (cf. Sutton and Barto,
1998, p. 163-191) is not investigated (cf. s. 6.4.2 for the reasons of this).

The value et, defined as:

169

 et = (rt+1 + γ V'π[st+1]) - V'π[st] Eq. 13.15

is called “TD-error” (Temporal-Difference error). The TD-error represents the difference
between two estimates of the true evaluation Vπ[st]. The first estimate, (rt+1 + γ V'π[st+1]), is
expressed at time t+1. The second estimate, V'π[st], is expressed at time t. The fact that this
rule updates the estimate V'π[st] on the basis of another estimate (V'π[st+1]), makes the TD(0)
rule a “bootstrapping” method. How is it possible that notwithstanding this bootstrapping
process, V'π[st] converges to the true evaluations? The explanation is that the estimate (rt+1 + γ
V'π[st+1]) is more accurate than the estimate V'π[st] because:
• rt+1 is directly experienced, and not guessed as in V'π[st]
• V'π[st+1] is temporally closer to future rewards than V'π[st], so it is more accurate.
Notice that this rule attempts to compute accurate evaluations of the states according to the
current policy π, independently of its quality. S. 13.2.5 and 13.2.6 will show how this policy
can be improved on the basis of the evaluations. Notice also that this rule updates V'π[st] on
the basis of a sampling over the possible resulting states to which the execution of an action
might lead. When the evaluation of state s is updated several times the frequencies of visiting
of the state s' that follow s reflect the transition probabilities of the Bellman equation (cf. Eq.
13.9).

If each state is visited an infinite number of times, and if some other weak conditions
hold, the approximations V'π[st] converges to the true evaluations Vπ[st] (cf. Sutton and Barto,
1998, p. 141). Intuitively what happens during the updating of the evaluations is that the
rewards received at the goal states are propagated backward towards the preceding states, then
the (discounted) evaluations of these states are propagated backward to the states that
preceded them, and so on. Notice that the discount factor implies that the evaluations
associated with the states decrease exponentially for states progressively more distant from
the states with positive rewards. This means that the evaluations, as initially mentioned, form
a gradient field over the states, decreasing for states farther from the goal.

One possible way to implement the algorithm that approximates the Vπ evaluations is to
have a look-up table that stores the V'π in correspondence of the entries given by the states s.
This is called “tabular reinforcement learning”.

Updating the Estimates of Qππππ[s, a]. The same reasoning holds for the updating of the Q
evaluations. Assuming a policy π that leads to repeated exploration of different state-action
pairs, the following updating rule can be used to iteratively improve the estimates Q'π[s, a] of
Qπ[s, a] related to that policy:

 Q'π[st, at] ← Q'π[st, at] + η ((rt+1 + γ Q'π[st+1, at+1]) - Q'π[st, at]) Eq. 13.16

This rule is called “Sarsa” (Sutton and Barto, 1998, p. 145). If each state-action pair is visited
an infinite number of times, and if some other weak conditions hold, the Q'π[s, a] estimates
converge to Qπ[s, a] (cf. Sutton and Barto, 1998, p. 145). In the simplest case the Q'π[s, a] are
stored in a two-dimensional look-up table with s and a as entries (“tabular reinforcement
learning”).

Sarsa is slightly different from the most popular reinforcement learning algorithm, called
“Q-learning” (Watkins, 1989; Barto and Sutton, 1998, p. 148). Q-learning is implemented
with the following rule:

170

 Q'*[st, at] ← Q'*[st, at] + η ((rt+1 + γ maxa’[Q'*[st+1, a’]]) - Q'*[st, at]) Eq. 13.17

This rule attempts to directly approximate the optimal evaluations Q* (cf. optimal Bellman
Eq. 13.12). The estimates Q'*[st, at] converge to the optimal evaluations Q*[st, at] under the
only condition that each state-action pair is visited an infinite number of times (Watkins,
1989).

Notice that in Q-learning the estimates Q'* converge to the evaluations Q* corresponding
to the optimal policy (e.g. the policy that moves to the goal state following the most direct
“route”) independently of the policy that is being followed. For this reason it is called an “off-
policy” method. This differs from TD(0) and Sarsa where the estimates V'π and Q'π converge
to the Vπ and Qπ related to the policy π followed at the moment. These are called “on-policy”
methods.

13.2.5 Searching the Policy with the Q'* and Q'ππππ evaluations

How do we build a policy on the basis of the evaluations? The analysis of this problem starts
with the easiest case of the Q evaluations and “Q-learning” (cf. Watkins, 1989; Sutton and
Barto, 1998, pp. 148-149). Suppose we have a certain policy, e.g. a random walk. The
updating rule of Eq. 13.17 leads to progressively more accurate estimates Q'* of Q*. At this
point, if we are in a state s and we want to implement a policy that is better than the random
walk, we can “ascend” the gradient field of evaluations toward higher evaluations, even if
they are approximate, by selecting the actions as follows:

 at = argmaxa∈A[Q'*[st, a]] Eq. 13.18

This policy is called the “greedy-policy”. Notice that we can improve the Q'* evaluations and
follow the greedy policy in parallel. The improvement of the evaluations automatically brings
an improved policy.

It is important to notice that there is a trade-off between the need to exploit the
knowledge incorporated in the evaluations and the need to explore different state-action pairs
to improve the global evaluations themselves. The greedy policy does not guarantee enough
exploration because at each state it always selects the action with the maximum Q'*. One
popular way to improve exploration is to select the best action only with a certain probability
1-ε , say equal to 0.95, and to select an action among the other actions with probability ε =
0.05. The selection among these actions is done with a uniform probability distribution. The
resulting policy is called “ε-greedy policy”. It has been demonstrated (Watkins, 1989) that
this policy converges to the optimal policy π∗, and the Q'* converges to Q*, if ε progressively
converges to 0 (i.e. to the greedy policy).

A commonly used variant of the ε-greedy policy, is the “soft-max policy”. This takes into
consideration the fact that the probability of choosing an action should be correlated with the
level of Q, instead of being, say, either 0.95 or 0.01. According to the soft-max function (or
Boltzmann distribution) the probability Pr[.] that a given action a becomes the winning action
awin given the current state s, is:

 Pr[a = awin] = exp[Q'*[s, a]] / Σa'∈A[exp[Q'*[s, a']]] Eq. 13.19

The case of Sarsa is similar. The greedy policy selects the action with maximum Q'π:

 at = argmaxa∈A[Q'π[st, a]] Eq. 13.20

171

Also in this case an ε-greedy policy or a soft-max policy can be followed to allow

exploration. When one of these policies is used in parallel with the updating of the Q'π
evaluations, the policy converges to the optimal policy π∗ and the Q'π estimates converge to
the optimal evaluations Q* if each state-action pair is visited an infinite number of times and
if the policy converges to a greedy policy (Sutton and Barto, 1998, p. 146).

13.2.6 Actor-Critic Model

Notice that an agent that learns on the basis of Q-learning or Sarsa does not need to have a
data structure to store the action probabilities of the policy. In fact if Q'* or Q'π are stored in a
suitable data structure, the probabilities of actions can be computed on the fly on the basis of
the Q'* or Q'π values through the ε-greedy method or the soft-max method. This is what is
done in the majority of reinforcement learning applications. A different type of reinforcement
learning methods, called “actor-critic methods”, is based on the evaluations V'π of Eq. 13.14
(Barto et al., 1983; Sutton and Barto, 1998, pp. 151-153). These methods are particularly
relevant because they are at the core of all the architectures and algorithms presented in this
thesis.

Actor-critic methods are based on two data structures, one that stores the evaluations,
called “critic”, and one that stores the policy, called “actor”. The term critic is often used to
name the data structure storing the evaluations plus the process that computes the error et
defined later in Eq. 13.21. In the thesis for clarity the term “evaluator” is used to refer to the
data structure that stores the evaluations while the term “TD-critic” is used to refer to the
process that computes et. The actor, the data structure storing the policy, can assume the form
of a look-up table that stores the probabilities of the state-action pairs, and has the states s and
the actions a as entries (“tabular reinforcement learning”). Alternatively it can store the
“action merits” of the state-action pairs, that here are indicated with m[s, a]. An “action merit”
is a value that summarises the contribution of that state-action pair to the achievement of the
long-term reward. The probabilities used to select the actions are calculated on the basis of the
merits (considered as pseudo-probabilities) using a method such as the soft-max method.

It has just been said that the evaluator stores the approximate evaluations V'π. After an
action at is executed the evaluator evaluates the new state st+1 to determine if it is better or
worse than the previous state st. This is done by comparing the estimate V'π[st+1] of the new
state, and the estimate V’π[st] of the old state. The comparison has to take into account the fact
that the evaluations are expressed in different times, and that a reward could be received when
passing from st to st+1. The proper formulation of this comparison is represented by the TD-
error et of Eq. 13.15, repeated here for convenience:

 et = (rt+1 + γ V'π[st+1]) - V'π[st] Eq. 13.21

This error can be used to correct the evaluations of the evaluator, with the updating rule

of Eq. 13.14, here expressed in terms of the TD-error:

 V'π[st] ← V'π[st] + η ((rt+1 + γ V'π[st+1]) - V'π[st]) = V'π[st] + η et Eq. 13.22

The interesting thing is that the TD-error is also suitable for updating the merit m[s, a] of

the action at (but only this one) selected by the actor:

 m[s, a] ← m[s, a] + ζ et Eq. 13.23

172

where ζ is a learning parameter. The reason why the TD-error is suitable for updating the
merit of the action selected is that if the estimate V'π[st] has converged to the true value Vπ[st],
it represents the average of the sum of the future discounted rewards over the actions that can
be selected at st, sampled on the basis of their current probabilities. If an action at is selected
and executed at st and we have that (rt+1 + γ V'π[st+1]) > V'π[st], this means that the action
selected has led to a state st+1 that has a discounted evaluation that is higher than the average
discounted evaluation of the states that are usually reached from st. In this case the updating
rule of Eq. 13.23 suitably increments the merit of the action at selected (and hence its
probability). On the contrary if we have that (rt+1 + γ V'π[st+1]) < V'π[st] this means that the
action selected has led to a state that has a discounted evaluation that lower than the average
evaluation of the states that are usually reached from st. In this case the updating rule of Eq.
13.23 suitably decreases the merit of the action at selected (and hence its probability).

The implementation of the actor-critic algorithms implies that the evaluations and the
policy are improved in parallel while the agent is acting. The evaluations become more
accurate for the states given the current policy, while the current policy is improved toward
the optimal policy on the basis of the current evaluations. The parallel updating of evaluations
and policy is called “policy iteration”.

It has been mentioned that the actor-critic methods are at the core of all the architectures
and algorithms presented in this thesis. Why have they been preferred to the more simple and
popular Q-learning? There are three reasons for this choice:
• Reinforcement learning methods can be applied with success to real problems only if an

approximation method is employed (cf. s. 13.2.8). Sutton et al. (2000) have shown that a
version of actor critic algorithm with arbitrary differentiable function approximation
converges to a locally optimal policy. In contrast so far the strategies based on Q
evaluations have proven theoretically intractable for similar results.

• Stochastic policies can be better than deterministic policies to deal with partially
observable Markov decision processes (cf. s. 13.2.8).

• The author is particularly interested in the actor-critic methods because it has been shown
that they have an interesting biological plausibility (cf. Sutton and Barto, 1990; Houk et
al., 1994; Baldassarre, 2001b and 2002).

13.2.7 Macro-actions and Options

In the last few years, reinforcement learning research has started to investigate the concept of
“macro-actions” or “options” within the Markov decision processes framework (Sutton et al.,
1998). To make long-term decisions, an agent needs to predict the consequences of the
possible courses of action at multiple levels of temporal abstraction. Consider a traveller
deciding to undertake a journey to a distant city. The traveller has to decide to go by fly or to
drive. Each of these steps involves prediction and decision. After a decision is taken, smallest
actions have to be decided. For example calling a taxi may involve finding a telephone,
dialling each digit, and so on down to the individual muscle contractions to push the buttons.

A macro-action consists of three components. An “input set”:

 I ⊆ S Eq. 13.24

a “policy”:

 π: S × A → [0, 1] Eq. 13.25

173

and a “termination condition”:

 β: S → [0, 1] Eq. 13.26

A macro-action is available at state s only if s ∈ I. The input set restricts the range of
application of the option in a potentially useful way. In particular it limits the range over
which the option's policy need to be defined. If the option is taken then actions are selected
according to π (in this section π is used for the policy of option and µ for the global policy).
The option terminates stochastically according to β. When the option terminates, the agent
selects another option.

Planning with options requires a model of their consequences. A semi-Markov decision
model (SMDM) can be used for this purpose. The adjective “semi-” indicates the fact that
within this model the single options are treated as a whole. At this level the Markov
assumption holds. At the level of the policy of the single option, the Markov assumption does
not hold.

The “reward” part of the model of an option o for any state s, is:

 ro
s = E[rt+1 + γ rt+2 +γ2 rt+3 + … +γk-1 rt+k | ε[o, s, t]] Eq. 13.27

where t+k is the time where o terminates, ε[o, s, t] is the event that in state s and time t the
macro-action o is chosen. The state-prediction part of the model is:

 po
ss' = Σ∞

k=1 [γk Pr[st+k = s' | ε[o, s, t]]] Eq. 13.28

po

ss' is a combination of the likelihood that s' is the state in which o terminates, weighted with
a measure of how delayed that outcomes is relative to γ.

If we define µ the Markov policy that selects for options in correspondence of a given
state, then we can define the value of a state for this option policy as:

 Vµ[s] = E[rt+1 + γ rt+2 + … +γk-1 rt+k + γ k Vµ[st+k]| ε[µ, s, t]] =
= Σo∈O [µ[s, o] (ro

s + Σs'[po
ss' Vµ[s']])]

Eq. 13.29

where k is the duration of the first option selected by µ. Notice that the discount coefficient is
incorporated into the transition probabilities (cf. Eq. 13.28). A similar equation can be written
for Qµ[s, o]:

 Qµ[s, o] = E[rt+1 + γ rt+2 + … +γk-1 rt+k + γ k Vµ[st+k]| ε[o, s, t]] =
= E[rt+1 + γ rt+2 + … +γk-1 rt+k + γ k Σo'∈O [µ[st+k, o'] Qµ[st+k, o']]| ε[o, s, t]] =

= ro
s + Σs'[po

ss' Σo'∈O [µ[s', o'] Qµ[s', o']]

Eq. 13.30

From these equations it is possible to infer the optimal equation that corresponds to the

best policy µ∗ as we have done in the case of simple actions. It is also possible to define an
iterative algorithm to approximate the evaluations of the states:

 Vµ[s] ← Vµ[s] + η((ro
s + γ k Vµ[st+k]) - Vµ[s]) Eq. 13.31

Notice that for these sample backups the discount factors have to be made explicit since there
are no transition probabilities.

174

For the case of the Q values the iterative algorithm is:

 Qµ[s, o] ← Qµ[s, o] + η((ro
s + γ k Qµ[st+k, ot+k]) - Qµ[s, o]) Eq. 13.32

The theory of options is quite new. Few applications and few results have been obtained

on its basis (e.g. McGovern et al., 1998; Sutton et al., 1999). Notwithstanding this, the idea of
options that it offers is very general, so it is useful as a solid foundation for developing
different algorithms for abstract reinforcement learning and abstract planning based on
reinforcement learning. Chapter 11 shows how the theory of options has been useful for this
research to develop a simple kind of abstract planning.

13.2.8 Function Approximation and Reinforcement Learning

So far it has been assumed that the reinforcement learning methods presented are
implemented with states represented as whole discrete entities and look-up tables (“tabular
reinforcement learning”). If the number of states is big, this approach is not feasible. It would
not be possible to have a data structure to store all possible state evaluations and all possible
state-action pairs (space complexity). It would also take too long to accumulate experience
about all such states (time complexity).

An example of this problem is a robot endowed with several sensors. Each sensor gives
partial information about the state of the world, so that many sensors are needed. Together the
sensors return a vector of numbers (“state variables”). If b is the (average) number of states of
a sensor, and n is the total number of the agent's sensors, the number of states that the robot
can perceive is about bn. For example the simulated robot used in this research is endowed
with a simple one-dimension binary retina with 50 pixels. This implies 250 different possible
input configurations. The exponential increase for each state variable (“dimension”) added,
makes it impossible to treat each single state of the problem individually.

The only solution to this difficulty is to use “function approximation methods” (Sutton,
1996; Sutton and Barto, 1998, p. 193). These methods are capable of “generalising”, i.e. they
can extend the experience accumulated for some states to states described by similar state
variables (cf. also s. 4.4.1 on this issue).

Some examples of function approximation methods are the following: neural networks
(cf. s. 13.3.3; Sutton and Barto, 1998, p. 197-202; Samejima and Omori, 1999); CMACs
(Albus, 1981); Kanerva coding (Kanerva, 1988; Sutton and Whitehead, 1993); decision-tree
(Chapman and Kaelbling, 1991); explanation-based learning methods (Yee et al., 1990).

13.2.9 Dynamic Programming

Dynamic programming (Ross, 1983; Bertsekas, 1987) refers to a collection of algorithms that
can be used to compute evaluations and policies given a model of the environment as the one
summarised by Eq. 13.3 and Eq. 13.5. This and the following sections present the most
important aspects of dynamic programming relevant for this research.

If a model of the environment is available, the updating of the state evaluations can
exploit the fact that the transition probabilities and expected rewards are known. If we assume
we have a particular policy π[s], then the estimates V'π[s] for each state can be updated (this
is called “sweep”) with the following rule:

 V'π[s] ← Σa∈A[π[a, s] Σs'∈S[pa
ss' (ra

ss' + γ V'π[s'])]] Eq. 13.33

175

This rule directly descends from the Bellman Eq. 13.9, and is called “policy evaluation”.
Notice that V'π[s] is updated according to all possible next states (“full backup”), not just one
as in the case of the reinforcement learning methods (“sample backup”, cf. Eq. 13.14 and
Figure 13.1). If this updating rule is applied iteratively the estimates V'π[s] converge to the
true values Vπ[s] (e.g. Sutton and Barto, 1998, p. 91).

The model of the environment can also be used to compute the greedy policy on the basis
of the current evaluations (“policy improvement”). Suppose we have started with a random
policy, and then we have executed several cycles of policy evaluation so that the estimates
V'π[s] are now accurate. We can compute the greedy policy with respect to the new estimates
V'π[s] by selecting the action a according to the following rule:

 a = argmaxa[Σs'∈S[pa
ss' (ra

ss' + γ V'π[s'])]] Eq. 13.34

The “policy improvement theorem” (e.g. Sutton and Barto, 1998, p. 95) guarantees that the
evaluations of all states under the new greedy policy are better than or the same as previously.

If cycles of policy evaluation and cycles of policy improvement are alternated (“policy
iteration”), the system converges to the optimal policy and optimal evaluation function if all
the states are visited an infinite number of times (e.g. Sutton and Barto, 1998, p. 97).

Figure 13.1: Left: sample backup typical of reinforcement learning m
of dynamic programming methods. Empty circles represent states, f
edges represent selection of actions or transitions to new states. Stat

time step when they occur. Dotted lines have been traced around the
backup.

It is not necessary to wait until the policy evaluation co
policy improvement. Policy evaluation can be stopped after ju
with cycles of policy improvements (“value iteration”). Conv
particular the policy evaluation and the policy improvement c
updating rule:

 V'π[s] ← maxa[Σs'∈S[pa
ss' (ra

ss' + γ V'π[s'])

When dynamic programming is applied to a deterministic

to estimate the optimal evaluations V*[s] off-policy, selectin
specific succeeding state (cf. Sutton and Barto, 1998, pp. 156-1
updating rule becomes:

1

t

1
t +
ethods. R
ull circle
es and ac
states an

nverges
st one
ergence
an be c

]]

environ
g an ac
57). In t
t +
t

t
 t
ight: full backup typical
s represent actions, and
tions are marked by the
d actions involved in the

 to execute a cycle of
sweep, and interleaved
 is still guaranteed. In
ombined into a single

Eq. 13.35

ment and is being used
tion means selecting a
hese circumstances the

176

 V'[s] ← maxa[ra
s + γ V'[s']] Eq. 13.36

It is interesting to see what happens during the succeeding sweeps of dynamic

programming in this deterministic case, assuming that the initial evaluation estimates are 0
and that there is only one goal state. The evaluations will start to be updated for the states
close to the goal state and then progressively for the states more distant from the it. The
updated evaluations will form a sort of wave front expanding from the goal. The states
reached by this wave front will immediately assume the correct value. This is equivalent to
what happens with “activation diffusion planning” (cf. s. 4.5.1).

13.2.10Asynchronous Dynamic Programming

One drawback of dynamic programming value iteration is that one sweep requires the
updating of all the estimates V'π[s]. This method is called “synchronous dynamic
programming”. It also requires that the updates be done on the basis of the old evaluations. If
the number of states is very big, this method can require a prohibitive amount of time. Luckily
there are other approaches that reduce the number of states of which to update the backups.
Now these approaches are reviewed.

An approach, “asynchronous dynamic programming”, focuses the backups on few states
and uses the recent values of other states to execute these backups. This approach is still
guaranteed to converge if all states are still visited an infinite number of times (Bertsekas,
1995; Barto et al., 1995). Asynchronous dynamic programming is particularly important
because it can be mixed with control, i.e. the execution of the actions under the policy. In
doing so asynchronous dynamic programming can focus on states more frequently visited
under the effect of the policy, i.e. on states more relevant for control. Notice that, given that a
model of the environment is available, the execution of the actions selected by the policy can
be carried out in simulation mode, i.e. through the model itself instead of the real experience.

13.2.11Trial-Based Real-Time Dynamic Programming and Heuristic Search

Asynchronous dynamic programming is still not fully satisfying because it still requires that
the agent visit all the states an infinite number of times. “Trial-based real-time dynamic
programming” (Barto et al., 1995) is another approach that allows a further focussing of the
backups while still converging. Its convergence has been demonstrated for the “stochastic
shortest-path problems” defined as follows (the terminology used for Markov decision
problems is adopted; when it was not too limiting the problem definition has been restricted to
simplify its presentation):
• The problem consists of a set of states S. Some of these states are called “absorbing

states” (goal states). Any action executed at an absorbing state leads to the same
absorbing state with probability 1. Any action executed at an absorbing state has reward
0. Any action executed at a non-goal state leads to a negative non-zero reward (“cost”).
The discount coefficient is 1.

• The problem is divided in “trials”. A trial is a finite number of time steps during which
the agent can pursue the goal. The length of the trial is enough to reach a goal-state from
any “initial state” (see below). The time limit imposed by trials has an important effect. It
prevents getting stuck in endless cycles. The length of trials can be extended
progressively to ensure that it becomes long enough to reach the goals (cf. Barto et al.,
1995).

177

• There is a subset of “start states” from which the agent pursues the goal at the beginning
of each trial.

• A subset of states named “relevant states” is defined. A relevant state is a state that can be
reached by the execution of any optimal policy from any possible start state. The states
that cannot be reached in this way are defined “irrelevant states”.

Trial-based real-time dynamic programming executes an infinite number of trials from each
start state of the stochastic shortest-path problem. It concurrently executes control and
asynchronous dynamic programming updating of the evaluations of the states visited. In
particular it always executes the backup of the state visited under control, and eventually other
backups of other states. For each state visited it follows this procedure:
• Look-ahead. Compute all the possible values Σs'∈S[Pa

ss' (ra
ss' + γ V'π[s'])] that can be

obtained from the current state s by selecting each of the actions a.
• Update evaluations' estimates. Backup the current state on the basis of Eq. 13.35.

Eventually execute backups for other states (e.g. by generating a short look-ahead search
from the current state).

• Action selection. Follow the greedy policy with respect to the most recent evaluation
estimates (ties are resolved randomly).

A theorem from Barto et al. (1995) asserts that, if applied to a stochastic shortest-path
problem, trial-based real-time dynamic programming converges to the optimal evaluation
function and optimal policy on the set of relevant states under the following conditions: (a)
the initial evaluations of the goals states is 0; (b) the initial evaluations for the non-goal states
are optimistic (e.g. they are 0).

Now a bridge between Markov decision processes and heuristic search can be built. This
can be done very simply by noticing that the three steps of learning real time A* illustrated in
s. 13.1.2 have a close correspondence with the three steps of trial-based real-time dynamic
programming just illustrated, in the case this is applied to a deterministic problem. This
correspondence was first demonstrated by Barto et al. (1995). Cf. s. 3.2 for some critical
observations on this correspondence.

178

Appendix 3

13.3 Feed-Forward Architectures and Mixture of Experts Networks

13.3.1 Feed-Forward Architectures and Error Backpropagation Algorithm

The error backpropagation algorithm (Rumelhart et al., 1986) is usually used to train a feed-
forward neural network with three layers (or more, see Figure 13.2).

Figure 13.2: A feed-forward neural network trained with a back-propagation algorithm. Full circles are
pass-through units. Empty circles are sigmoidal units or units with other types of transfer functions.

The “input layer” is made up of simple pass-through units, whose activation is denoted by

xi. The “hidden layer” and the “output layer” are made up of units whose activation is
respectively:

 yj = f[pj] = f[Σi[wji xi]] and vq = f[pq] = f[Σj[wqj yj]] Eq. 13.37

where yj is the activation of the hidden unit j, pj is the “activation potential” of the hidden unit
j, wji is the weight between the input unit i and the hidden unit j, vq is the activation of the
output unit q, pq is the activation potential of the output unit q, and wqj is the weight between
the hidden unit j and the output unit q. f[.] is the “transfer function” of the units, for example a
linear function or the sigmoidal function σ[.]:

 σ[p] = 1 / (1 + exp[-p]) Eq. 13.38

The error back-propagation algorithm updates the weights so that the network

approximates a function for which some input and output patterns are known (“training set”).
Let xk be the input pattern (vector of real numbers) and vd

k the output pattern (“teaching
output”) of the element k of the training set.

vq

yj

xi

Hidden units

Input units

Output units

wji

wqj

179

At the beginning the weights of the network are set randomly within a small interval. The
idea of the learning algorithm is that the weights should be changed in correspondence to a
given input pattern xk of the training set, in order to diminish the distance between the output
pattern returned by the network, vk, and the teaching output vd

k. For each training element k
an error Ek is defined as follows (for simplicity the index k for the network's elements is
omitted):

 Ek = 1/2 Σq[(vq - vd

q)2] Eq. 13.39

where vd
q is the teaching output for the output unit q. If a weight changes, the error changes.

In order to decrease the error Ek, the backpropagation algorithm updates each weight in
proportion to the error's change caused by that weight's change (“hill climbing”). This is done
by updating the weights in proportion to the partial derivative of the error with respect to the
weight. The Widrow-Hoff formula (Widrow and Hoff, 1960) is used to update the weights
wqj:

 ∆wqj= - η (∂Ek/ ∂ wqj) = - η (vq - vd

q) f'[pq] yj Eq. 13.40

where η is a learning rate and f'[.] is the derivative of the transfer function. If the transfer
function f[.] is the sigmoidal function, then f'[p] = σ'[p] = σ [p] (1 - σ[p]). If f[.] is linear then
f'[.] = 1 and the formula assumes the following form, called “delta rule”:

 ∆wqj = - η (∂Ek/∂wqj) = - η (vq - vd

q) yj Eq. 13.41

To apply the same principle to the weights wji between the input and hidden layer, the
derivative (∂Ek/∂wji) of the error Ek with respect to the same weights is needed. Assuming an
the error (yj - yd

j) for the hidden units, if we use the Widrow-Hoff formula to update the
weights wji we have:

 ∆wji = - η (yj - yd

j) f'[pj] xi Eq. 13.42

Given that the error (yj - yd
j) for the hidden units is unknown, it is substituted with the

derivative of the error Ek with respect to yj:

 ∆wji = - η (∂Ek/∂yj) f'[pj] xi = - η (Σq[(vq - vd

q) f'[pq] wqj]) f'[pj] xi Eq. 13.43

13.3.2 Mixture of Experts Neural Networks

Mixture of experts neural networks (Jacobs et al., 1991; Haykin, 1998) are networks with a
modular architecture based on a set of “expert networks” and a “gating network”, and trained
with a supervised learning algorithm. A simple example of these networks is presented in
Figure 13.3. For simplicity the experts of this architecture have no hidden layer and only one
output unit, but in general they can have any kind of feed-forward architecture and any
number of output units. The idea at the basis of this kind of networks is that during training
each expert should specialise on a sub-region of the input-output space, while the gating
network should learn to decide which expert is competent for which sub-region.

The gating network has a number of output-units equal to the number of experts. The
output units of the experts, vk, and the gating network's output units, ok, are linear:

180

 vk = Σj[wkj yj] ok = Σj[zkj yj] Eq. 13.44

where yj is the activation of the input unit j, wkj is the weight of the expert k and input unit j,
and zkj is weight of the gating network's output unit k and input unit j. The output V of the
whole network is calculated by “mixing” the output of the experts as follow:

 V = Σk[vk gk] Eq. 13.45

where gk is a transformation of the gating network's output unit k. In particular gk is computed
through the “softmax activation function” on the basis of ok, as follows:

 gk = exp[ok]/Σf[exp[of]] where: Σk gk = 1 Eq. 13.46

Figure 13.3: Example of architecture of a mixture of experts
through units and dotted connections simply copy the signal int

graphical reasons). Empty circles are linear units. Empty

In order to train the network, each expert is though

instead of a deterministic one. In particular it is assum
probability distribution centred on vk. On the basis of this
on the input y and expert's weights wk, it is possible to
desired output vd:

 l[vd | wk, y] = (1/(2π)1/2) exp[-1/2 (v

The logarithmic likelihood (the logarithm simplifies

the distribution of the output of the whole network is:

 L[vd | w, z, y] = ln l[vd | w, z, y] = ln[Σk[gk (1/(2π)1/2

where w are the weights of all experts and z are the we
formula g should be interpreted as probabilities (“a-prio

Experts

Output of the whole network:
V = Σk[vk gk]

Multiplicative
units

Input patterns yt

ok

vk

gk
Sofmax
neural network. Full circles are pass-
o the downstream units (introduced for
 squares are multiplicative units.

t to produce a probabilistic output
ed that this output has a Gaussian
 distribution, whose centre depends
 compute the likelihood l[.] of the

d - vk) 2] Eq. 13.47

computations) of vd with respect to

) exp[-1/2 (vd - vk)2]]] Eq. 13.48

ights of the gating network. In this
ri probabilities”). It is possible to

Gating
network

181

compute how this likelihood changes when the weights of the experts and the gating network
change (gradients):

 ∂L/∂wk = hk (vd - vk) y ∂L/∂zk = (hk - gk) y Eq. 13.49

where hk, named “a posteriori probabilities”, are defined as follows:

 hk = (gk exp[-1/2 (vd - vk)2]) / (Σf[gf exp[-1/2 (vd - vf)2]]) Eq. 13.50

Similarly to what has been done for the backpropagation algorithm, the gradients can be

used to iteratively adjust the weights to increase the likelihood of producing the desired output
(“hill climbing”):

 ∆wk = η hk (vd - vk) y ∆zk = ζ (hk - gk) y Eq. 13.51

where η and ζ are learning parameters.

13.3.3 The Generalisation Property of Neural Networks

Neural networks are capable of generalisation. This means that they can produce appropriate
outputs if presented with input patterns never seen before, but similar to some patterns with
which they have been trained (Hinton et al., 1986; Rolls and Treves, 1998, p. 198, p. 29).
Generally speaking, the generalisation property of neural networks is caused by the fact that
when the weights are updated to improve an input-output association, these changes influence
other input-output associations, possibly improving similar input-output associations in terms
of error.

Closely related to the generalisation capacity is the capacity to isolate “common
structure” underlying different “problems” (cf. McClelland et al., 1995) and to compress
information into the same weights. Here a “problem” is intended as a particular set of input-
output associations to learn. “Common structure” is any correlation that may exist between
the input-output associations of one problem and the input-output associations of another
problem. If some of these correlations are present, it means that the whole set of associations
is partially redundant and that it is possible to store it in a compressed form. This is precisely
what neural networks do when they are repeatedly trained on the same input-output sets of
associations (cf. Elman and Plunkett., 1997).

182

14 References

14.1 Candidate's Publications During the PhD Research

The research carried out during the three years of PhD study has led to the production of the
published papers listed below. The papers that present simulations and results substantially
different from the ones presented in this thesis are marked with an asterisk * or with a double
asterisk **.

The papers marked with one asterisk refer to a piece of research that the author has done
at the beginning of the PhD before focussing on planning. This research has investigated
“cultural evolution in multi-agent systems”, and has been carried out by using reinforcement
learning, genetic algorithms (Mitchell, 1996) and imitation (the latter has been simulated
through the error backpropagation algorithm, Rumelhart et al., 1986). The publications
marked with a double asterisk have investigated the biological aspects of some models
presented in the thesis. Both pieces of research have not been included in the thesis because
they are too heterogeneous with respect to the topic of planning.

* Baldassarre G., Parisi D. (1999). Individual Learning, Noise and Selection in Cultural

Evolution – A Study through Artificial Life Simulations. In Dautenhahn K., Nehaniv C.
(eds.), Proceedings of the Symposium on Imitation in Animals and Artifacts - AISB ’99,
pp. 32-37. Brighton: The Society for the Study of Artificial Intelligence and Simulation
of Behaviour.

** Baldassarre G., Parisi D. (2000). Classical and instrumental conditioning: From laboratory
phenomena to integrated mechanisms for adaptation. In Meyer J-A., Berthoz A., Floreano
D., Roitblat H., Wilson S.W. (eds.), From Animals to Animats 6: Proceedings of the 6th
International Conference on the Simulation of Adaptive Behaviour (SAB-2000) -
Supplement Volume, pp. 131-139. Honolulu: International Society for Adaptive
Behaviour.

Baldassarre G. (2000). Needs and motivations as mechanisms of learning and control of
behaviour: Interference problems with multiple tasks. In Trappl R. (ed.), Cybernetics and
Systems 2000 - Proceedings of the Fifteenth European Meeting on Cybernetics and
Systems Research, pp. 677-682. Vienna: Austrian Society for Cybernetic Studies.

* Baldassarre G. (2001a). Cultural evolution of “guiding criteria” and behaviour in a
population of neural-network agents. Journal of Memetics - Evolutionary Models of
Information Transmission, Vol. 4.
http://www.cpm.mmu.ac.uk/jom-emit/2001/vol4/baldassarre_g.html

** Baldassarre G. (2001b). A Modular Neural-Network Model of the Basal Ganglia's Role in
Learning and Selecting Motor Behaviours. In Altmann E.M., Cleermans A., Schunn
C.D., Gray W.D. (Eds.). Proceedings of the Fourth International Conference on
Cognitive Modeling (ICCM-2001). Pp. 37-42. Mahwah, NJ.: Lawrence Erlbaum.

Baldassarre G. (2001c). A Planning Modular Neural-Network Robot for Asynchronous Multi-
Goal Navigation Tasks. In Arras K.O., Baerveldt A.-J, Balkenius C., Burgard W.,
Siegwart R. (eds.), Proceedings of the 2001 Fourth European Workshop on Advanced

183

Mobile Robots (EUROBOT-2001), pp. 223-230. Lund, Sweden: Lund University
Cognitive Studies.

Baldassarre G. (2001d), Coarse Planning for Landmark Navigation in a Neural-Network
Reinforcement Learning Robot, IROS-2001 Proceedings of the International Conference
on Intelligent Robots and Systems, IEEE.

** Baldassarre G. (2001e), A modular neural-network model of the basal ganglia's role in
learning and selecting motor behaviours, Cognitive Systems Research, v. 3, pp. 1-13.

** Baldassarre G. (2001f), Limiti di efficacia temporale del condizionamento operante: un
modello connessionistico, In Pinna B. (ed.), Congresso nazionale della sezione di
psicologia sperimentale, pp. 59-61, Sassari, EDES Editrice Democratica Sarda.

**Baldassarre G. (2002), A biologically plausible model of human planning based on neural
networks and Dyna-PI models, In Butz M., Sigaud O., Gerard P. (eds.), Proceedings of
the Workshop on Adaptive Behaviour in Anticipatory Learning Systems – ABiALS-2002
(hold within SAB-2002), pp. 40-60. Wurzburg: University of Wurzburg

14.2 References

Albus J.S. (1981). Brain, Behaviour, and Robotics. Peterborough, NH: Byte Books.
Allen J., Hendler J., Tate A. (eds.) (1990). Readings in Planning. Palo Alto, CA: Morgan

Kaufmann.
Ambros-Ingerson J.A., Steel S. (1988). Integrating planning, execution and monitoring. In

Proceedings of the Seventh National Conference on Artificial Intelligence (AAAI-1988),
pp. 735-740. St. Paul, Minnesota: Morgan Kaufmann.

Arkin R.C. (1989). Navigation path planning for a vision-based mobile robot. Robotica, vol.
7, pp. 49-63.

Arkin R.C. (1998). Behaviour-Based Robotics. Cambridge, MA: The MIT Press.
Barto A.G. (1994). Adaptive critics and the basal ganglia. In Houk J.C., Davis J.L., Beiser

D.G. (eds.), Models of Information Processing in the Basal Ganglia, pp. 249-270.
Cambrigde, MA: The MIT Press.

Barto A.G., Bradtke S.J., Singh S.P. (1995). Learning to act using real-time dynamic
programming. Artificial Intelligence, Special Volume: Computational Research on
Interaction and Agency, vol. 72, pp. 81-138.

Barto A.G., Sutton R.S., Anderson C.W. (1983). Neuronlike adaptive elements that can solve
difficult learning control problems. IEEE Transactions on Systems, Man and Cybernetics,
vol. 13, pp. 834-846.

Barto A.G., Sutton R.S., Watkins C.J.C.H. (1990). Learning and Sequential Decision Making.
In Gabriel M., Moore J.W. (eds), Learning and Computational Neuroscience:
Foundations of Adaptive Networks, pp. 539-602. Cambridge, MA: The MIT Press.

Bellman R.E. (1957). Dynamic Programming. Princeton: Princeton University Press.
Bertsekas D.P. (1995). Dynamic Programming and Optimal Control. Belmont, MA.: Athena

Scientific.
Blanzieri E., Katenkamp P. (1996). Learning radial basis function networks on-line. In

Proceedings of the Thirteenth International Conference on Machine Learning, pp. 37-45.
San Francisco, CA: Morgan Kaufmann.

Boutilier C., Dearden R., Goldszmidt M. (2000). Stochastic dynamic programming with
factor representations. Artificial Intelligence, vol. 121, pp. 49-107.

Brooks R.A. (1986). A robust layered control system for a mobile robot. IEEE Journal of
Robotics and Automation, vol 2, pp. 14-23.

184

Calabretta R., Nolfi S., Parisi D., Wagner G. P. (1998). Emergence of functional modularity
in agents. In Pfeiffer R. (ed.), From Animals to Animats 5: Proceedings of the 5th
International Conference on the Simulation of Adaptive Behaviour (SAB-1998), pp. 497-
504. Cambridge, MA: The MIT Press.

Caruana R. (1995). Learning many related tasks at the same time with backpropagation. In
Tesauro G., Touretzky D.S., Leen T.K. (eds.), Advances in Neural Information
Processing Systems 7, vol. 7, pp. 657-664. Cambridge, MA: The MIT Press.

Chapman D., Kaelbling L.P. (1991). Input generalisation in delayed reinforcement learning:
An algorithm and performance comparisons. In Proceedings of the Twelfth International
Joint Conference on Artificial Intelligence (IJCAI-1991), pp. 726-731. San Mateo, CA:
Morgan Kaufmann.

Dearden R. (2000). Learning and planning in structured worlds. PhD thesis. Vancouver:
Department of Computer Science, University of British Columbia.

Dearden R. (2001). Structured prioritised sweeping. Proceedings of the Eighteenth
International Conference on Machine Learning (ICML-2001). Pp. 82-89.

Dechter R., Pearl J. (1985). Generalized Best-First Search and the Optimality of A*. Journal
of the Association for Computing Machinery, vol. 32 (3), pp. 505-536.

Doran J (1966). Doubletree Searching and the Graph Traverser. Research Memorandum
EPU-R-22. Edinburgh: Department of Machine Intelligence and Perception, Edinburgh
University.

Draper D., Hanks S., Weld D. (1994). Probabilistic planning with information gathering and
contingent execution. In Proceedings of the Second International Conference in Artificial
Intelligent Planning Systems (AIPS). San Mateo: Morgan Kaufmann.

Duckett T., Nehmzow U. (1999). Exploration of unknown environments using a compass,
topological map and neural networks. In Proceedings of the IEEE International
Symposium on Computational Intelligence in Robotics and Automation. Monterey, CA:
IEEE Press.

Elman J.L., Plunkett K. (1997). Exercises in Rethinking Innateness: A Handbook for
Connectionist Simulations. Cambridge, MA: MIT Press.

Elman, J.L. (1990). Finding structure in time. Cognitive Science, vol. 14, pp. 179-211.
Fikes R.E., Nilsson N.J. (1971). STRIPS: a new approach to the application of theorem

proving to problem solving. Artificial Intelligence, vol. 2, pp. 189-208.
Fleuret F., Brunet E. (2000). DEA: An architecture for goal planning and classification.

Neural Computation, vol. 12, pp. 1987-2008.
Fomin T., Rozgonyi T., Szepesv'ari C., Lorincz A. (1996). Self-organizing multi-resolution

grid for motion planning and control. International Journal of Neural Sciences, vol. 7,
pp. 757-776.

Gatt E. (1992). Integrating planning and reaction in a heterogeneous asynchronous
architecture for controlling real-world mobile robots. In Proceedings of the tenth national
conference on artificial intelligence (AAAI-1992), pp. 809-815. San Jose, CA: AAAI
Press.

Ginsberg M.L. (1989). Universal planning: An (almost) universally bad idea. AI Magazine,
vol. 10 (4), pp. 40-44.

Hampson S. (1998). Connectionist Problem Solving. In Arbib M.A. (ed.), The Handbook of
Brain Theory and Neural Networks, pp. 756-760. Cambridge, MA: The MIT Press.

Harnad S. (1990). The symbol grounding problem. Phisica D, vol. 42, pp. 335-346.
Harnad S. (1993). Grounding symbols in the analog world with neural nets. Think, vol. 2, pp.

12-78.

185

Hart P.E., Nilsson N.J., Raphael B. (1968). A formal basis for the heuristic determination of
minimum cost paths. IEEE Transactions on Systems Science and Cybernetics, vol. SSC 4
(2), pp. 100-107.

Haykin S. (1999). Neural Networks: A Comprehensive Foundation. Upper Saddle River, NJ:
Prentice Hall.

Hebb D.O. (1949). The Organisation of Behavior. New York: Wiley.
Hinton G.E., McClelland J.L., Rumelhart D.E. (1986). Distributed representations. In

Rumelhart D.E., McClelland J.L., and the PDP Research Group (eds.), Parallel
Distributed Processing: Explorations in the Microstructure of Cognition. Cambridge,
MA: The MIT Press.

Hopfield J.J. (1982). Neural networks and physical systems with emergent collective
computational abilities. Proceedings of the National Academy of Sciences, vol. 79, pp.
2554-2558.

Houk J.C., Adams J.L., Barto A.G. (1994). A model of how the basal ganglia generate and
use neural signals that predict reinforcement. In Houk J.C., Davis J.L., Beiser D.G. (eds.),
Models of Information Processing in the Basal Ganglia, pp. 249-270. Cambrigde, MA:
The MIT Press.

Humphrys M. (1996). Action selection methods using reinforcement learning. In Maes P.,
Mataric M.J., Wilson S.W. (eds.), From Animals to Animats 4: Proceedings of the Fourth
International Conference on Simulation of Adaptive Behaviour (SAB-1996). Cambridge,
MA: The MIT Press.

Jaakkola T., Singh S.P., Jordan M.I. (1995). Reinforcement learning algorithm for partially
observable Markov decision problems. In Tesauro G., Touretzky D.S., Leen T.K. (eds.),
Advances in Neural Information Processing Systems 7 (NIPS-1994), pp. 345-352. San
Mateo, CA: Morgan Kaufmann.

Jacobs R.A., Jordan M.I. (1991). A competitive modular connectionist architecture. In
Advances in Neural Information Processing Systems, vol. 3, pp. 767-773. San Mateo,
CA: Morgan Kaufmann.

Jacobs R.A., Jordan M.I., Nowlan S.J., Hinton G.E. (1991). Adaptive mixtures of local
experts. Neural Computation, vol. 3, pp. 79-87.

Jakobi N., Husbands P., Harvey I. (1995). Noise and the reality gap: The use of simulation in
evolutionary robotics. In Moran F., Moreno A., Merelo J., Chacon P. (eds.), Proceedings
of the Third European Conference on Artificial Life, pp. 704-720. Berlin: Springer-
Verlag.

Jokoo M., Ishida T. (1999). Search algorithms for agents. In Weiss G. (ed.), Multiagent
Systems, pp. 165-197. Cambridge, MA: The MIT Press.

Kaelbling L.P., Littman L.M., Moore A.W. (1996). Reinforcement learning: A survey.
Journal of Artificial Intelligence Research, vol. 4, pp. 237-285.

Kanerva P. (1988). Sparse Distributed Memory. Cambridge, MA: The MIT Press.
Kohonen T. (1982). Self-organized formation of topologically correct feature maps.

Biological Cybernetics, vol. 43, pp. 59-69.
Korf R.E. (1985a). Depth-first iterative-deepening: An optimal admissible tree search.

Artificial Intelligence, vol. 27 (1), pp. 97-109.
Korf R.E. (1985b). Iterative-deepening A*: An optimal admissible tree search. In Proceedings

of the Ninth International Joint Conference on Artificial Intelligecne (IJCAI-1985), pp.
1034-1036. Morgan Kaufmann.

Korf R.E. (1988). Optimal path finding algorithms. In Kanal L.N., Kumar V. (eds.), Search in
Artificial Intelligence, pp. 223-267. Springer-Verlag: Berlin.

186

Korf R.E. (1990). Real-time heuristic search. Artificial Intelligence, vol. 42 (2-3), pp. 189-
211.

Kortenkamp D., Chown E. (1992). A directional spreading-activation network for mobile
robot navigation. In Meyer J.-A., Roitblat H.L., Wilson S.W. (eds.), From Animals to
Animats 2: Proceedings of the Second International Conference on Simulation of
Adaptive Behavior (SAB-1992), pp. 218-224. Cambridge, MA: The MIT Press.

Kushmerick N., Hanks S., Weld D. (1994). An algorithm for probabilistic least-commitment
planning. In Proceedings of the Twelfth National Conference on Artificial Intelligence,
pp. 1073-1078. AAAI Press.

Lee T., Nehmzow U., Hubbold R. (1998). Mobile robot simulation by means of acquired
neural network models. In Zobel R., Moeller D. (eds.), Proceedings of the Twelfth
European Simulation Multiconference (ESM-1998). Manchester, UK: SCS.

Lei G. (1990). A neural model with fluid properties for solving labyrinthian puzzle.
Biological Cybernetics, vol. 64 (1), pp. 61-67.

Levenick J.R. (1991). NAPS: A connectionist implementation of cognitive maps. Connection
Science, vol. 3, pp. 107-126.

Lin L.J. (1992). Self-improving reactive agents based on reinforcement learning, planning and
teaching. Machine Learning, vol. 8, pp. 293-391.

Lin L.J. (1993). Hierarchical learning of agent skills by reinforcement. In Ruspini E. H. (ed.),
IEEE - Proceedings of the International Conference on Neural Networsks, pp. 181-186.
New York, NY: IEEE Press.

Lin L.J., Mitchell T.M. (1992). Reinforcement learning with hidden states. In Meyer J-A,
Roitblat H.L., Wilson S.W. (eds.), From Animals to Animats 2: Proceedings of the
Second International Conference on Simulation of Adaptive Behaviour (SAB-1992), pp.
271-280. Cambridge, MA: The MIT Press.

Lin L.-J., Mitchell T.M. (1992). Memory approaches to reinforcement learning in non-
Markovian domains. Technical Report CMU-CS-92-138. Pittsburgh, PA: School of
Computer Science, Carnegie-Mellon University.

Linaker F. (2001). From Time-Steps to Events and Back. In Arras K.O., Baerveldt A.-J,
Balkenius C., Burgard W., Siegwart R. (eds.), Proceedings of the 2001 Fourth European
Workshop on Advanced Mobile Robots (EUROBOT-2001), pp. 223-230. Lund, Sweden:
Lund University Cognitive Studies.

Linden T.A. (1991). Representing software designs as partially developed plans. In Lowry
M.R., McCartney R.D. (eds.), Automating Software Design, pp. 603-625. Cambridge,
MA: The MIT Press.

Lorincz A., Polik I., Szita I. (2001). Event-learning and robust policy heuristics. Technical
report, NIPT-ELU-14-05-2001. Budapest: Department of Information Systems, Eotvos
Lorand University.

Ma Z.F. Doran J.F. (1993). CADDIE and its Multi-agent Planner. Unpublished Paper.
Maes P. (1989). The Dynamics of Action Selection. Proceedings of the AAAI-1989 Spring

Symposium on Limited Rationality. AAAI Press.
Maes P. (1991). A Bottom-Up Mechanism for Action Selection in an Artificial Creature. In

Wilson S. Arcady-Meyer J. (eds.), From Animals to Animats: Proceedings of the First
International Conference on Simulation of Adaptive Behaviour (SAB-1990), pp.238-246.
Cambridge, MA.: The MIT Press.

Maes Pattie (1990). Situated agents can have goals. Journal for Robotics and Autonomous
Systems, vol. 6 (1), pp. 49-70.

Mataric M.J. (1991). Navigating with a rat brain: A neurobiologically-inspired model for
robot spatial navigation. In Meyer J.A., Wilson S.W. (eds.), From Animals to Animats:

187

Proceedings of the First International Conference on Simulation of Adaptive Behavior
(SAB-1990), pp. 169-175. Cambridge, MA.: The MIT Press.

McCallum R.A. (1993). Overcoming incomplete perception with utile distinction memory. In
Utgoff P. (ed.), Proceedings of the Tenth International Conference in Machine Learning,
pp. 190-196. San Mateo, CA: Morgan Kaufmann.

McClelland J.L., McNaughton B.L., O'Reilly R.C. (1995). Why there are complementary
learning systems in the hippocampus and neocortex: Insights from the successes and
failures of connectionist models of learning and memory. Psychological Review, vol. 102,
pp.419-457.

McClelland, J.L., Rumelhart, D.E., Hinton, G. E. (1986). The appeal of Parallel Distributed
Processing. In Rumelhart D.E., McClelland J.L., and the PDP Research Group (eds.),
Parallel Distributed Processing: Explorations in the Microstructure of Cognition.
Cambridge, MA: The MIT Press.

McDonald M.A.F., Hingston P. (1994). Approximate discounted dynamic programming is
unreliable. Technical report 94/6. Department of Computer Science, The University of
Western Australia.

McGovern A., Precup D., Ravindran B., Singh S., Sutton R.S. (1998). Hierarchical optimal
control of MDPs. Proceedings of the Tenth Yale Workshop on Adaptive and Learning
Systems, pp. 186-191.

McGovern A., Sutton R.S., Fagg A.H. (1997). Roles of macro-actions in accelerating
reinforcement learning. Proceedings of the 1997 Grace Hopper Celebration of Women in
Computing, pp. 13-17.

Meyer J.-A., Berthoz A., Floreano D. (eds.) (2000). From Animals to Animats 6: Proceedings
of the Sixth International Conference on Simulation of Adaptive Behavior (SAB 2000).
Cambridge, MA: The MIT Press.

Meyer J.-A., Guillot A. (1990). Simulation of adaptive behaviour in animats: review and
prospect. In Meyer J.-A. and Wilson S.W. (eds.), From Animals to Animats: Proceedings
of the First International Conference on Simulation of Adaptive Behavior (SAB-1990),
pp. 2-14. Cambridge, MA: The MIT Press.

Miglino O., Lund H.H., Nolfi S. (1995). Evolving mobile robots in simulated and real
environments. Artificial Life, vol. 2, pp. 417-434.

Miller T.W., Glanz F.H., Kraft G.L. (1990). CMAC: An associative neural network
alternative to backpropagation. In Hanson S.J., Cowan J.D., Giles C.L. (eds.),
Proceedings of IEEE, pp. 1561-1567. San Mateo, CA: Morgan Kaufmann.

Miller T.W., Sutton R.S., Werbos P.J. (1990). Neural networks for control. Cambridge, MA:
The MIT Press.

Mitchell M. (1996). An Introduction to Genetic Algorithms. Cambridge, MA: The MIT Press.
Mitchell T.M (1990). Becoming increasingly reactive. In Proceedings of the Eighth National

Conference on Artificial Intelligence (AAAI-1990), pp. 1051-1058. Boston, MA: AAAI
Press.

Moore A.W., Atkeson C.G. (1993). Prioritised sweeping: Reinforcement learning with less
data and less real time. Machine Learning, 13, 103-130.

Morasso P., Vercelli G., Zaccaria R. (1992). Hybrid systems for robot planning. In
Aleksander I., Taylor J., (eds.), Artificial Neural Networks 2, pp. 691-697. Amsterdam:
North-Holland/Elsevier Science Publishers.

Murphy R. (2000). An Introduction to AI Robotics - Intelligent Robotics and Autonomous
Agents. Cambridge, MA: The MIT Press.

Neal R.M. (1995). Stochastic feed-forward neural networks. PhD Thesis. Toronto: Graduate
Department of Computer Science, University of Toronto.

188

Neal R.M. (1996). Bayesian learning for neural networks. Berlin: Springer-Verlag.
Nehmzow U. (2001). Quantitative analysis of robot-environment interaction - On the

difference between simulation and the real. In Arras K.O., Baerveldt A.-J, Balkenius C.,
Burgard W., Siegwart R. (eds.), Proceedings of the 2001 Fourth European Workshop on
Advanced Mobile Robots (EUROBOT-2001), pp. 223-230. Lund, Sweden: Lund
University Cognitive Studies.

Nehmzow U., Hallam J., Smithers T. (1989). Really Useful Robots. In Kanade T., Groen
F.C.A., Hertzberger L.O. (eds.), Proceedings of IAS 2 - Intelligent Autonomous Systems,
pp. 284--293. Amsterdam.

Nehmzow U., Smithers T., Hallam J. (1991). Location recognition in a mobile robot using
self-organising feature maps. In Schmidt G. (ed.), Information Processing in Autonomous
Mobile Robots. Berlin: Springer Verlag.

Nolfi S., Elman J.L., Parisi D. (1994). Learning and evolution in neural networks. Adaptive
Behavior, vol. 3, pp. 5-28.

Nolfi S., Tani J. (1999). Extracting regularities in space and time through a cascade of
prediction networks: The case of a mobile robot navigating in a structured environment.
Connection Science, vol. 11(2), pp. 129-152.

Noreils F., Chatila R. (1995). Plan execution monitoring and control architecture for mobile
robots. IEEE Transactions on Robotics and Automation, vol. 11, pp. 255-266.

Pohl I. (1971). Bi-directional Search. In Meltzer B., and Michie, D. (eds.), Machine
Intelligence 6, pp. 127-140. New York: American Elsevier.

Puterman M.L. (1994). Markov decision processes: discrete stochastic dynamic
programming. New York: John Wiley & Sons.

Ramamurti V., Ghosh J. (1997). Structurally adaptive modular networks for non-stationary
environments. Technical report TX 78712-1084. Austin, Texas: Department of Electrical
and Computer Engineering, University of Texas.

Revel A., Gaussier P., Lepretre S. and Banquet J.P (1998). Planification Versus Sensory-
Motor Conditioning: What Are the Issues? In Pfeiffer R. (ed.), From Animals to Animats
5: Proceedings of the Second International Conference on Simulation of Adaptive
Behaviour (SAB-1998), pp. 271-280. Cambridge, MA: The MIT Press.

Reynolds S.I. (2002). Experience stack reinforcement learning for off-policy control.
Technical report CSRP-02-1. Birmingham: School of Computer Science, University of
Birmingham.

Rojas R. (1996). Neural Networks - A Systematic Introduction. Berlin: Springer-Verlag.
Rolls E., Treves A. (1998). Neural Networks and Brain Function. Oxford: Oxford University

Press.
Ross S. (1983). Introduction to stochastic dynamic programming. New York, NY: Academic

Press.
Rumelhart D.E., Hinton G.E., Williams R.J. (1986). Learning representations by

backpropagation errors. In Rumelhart D.E., McClelland J.L., and the PDP Research
Group (eds.), Parallel Distributed Processing: Explorations in the Microstructure of
Cognition, vol. 1, pp. 318-362. Cambridge, MA: The MIT Press.

Rumelhart D.E., McClelland J.L. (1986). A distributed model of human learning and memory.
In Rumelhart D.E., McClelland J.L., and the PDP Research Group (eds.), Parallel
Distributed Processing: Explorations in the Microstructure of Cognition. vol. 2, pp. 170-
215. Cambridge, MA: The MIT Press.

Rumelhart D.E., McClelland J.L. and the PDP Research Group (eds.) (1986). Parallel
Distributed Processing: Explorations in the microstructure of cognition, vol. 1.
Cambridge, MA: The MIT Press.

189

Rummery G.A., Niranjan M. (1994). On-line Q-Learning using connectionist systems.
Technical Report CUED/F-INFENG/TR 166. Cambridge: Engineering Department,
Cambridge University.

Russell S., Norvig P. (1995). Artificial Intelligence: A Modern Approach. Englewood Cliffs,
NJ: Prentice Hall.

Sacerdoti E.D.(1974). Planning in a hierarchy of abstraction spaces. Artificial Intelligence,
vol. 5, pp. 115-135.

Sacerdoti E.D. (1977). A Structure for Plans and Behavior. New York: Elsevier.
Samejima K., Omori T. (1999). Adaptive internal state space construction method for

reinforcement learning of a real-world agent. Neural Networks, vol. 12, pp. 1143-1155.
Schmajuk N.A., Blair H.T. (1993). Place learning and the dynamics of spatial navigation: A

neural network approach. Adaptive Behaviour, Vol. 1-3, pp. 353-385.
Schmidhuber J. (1992). Learning unambiguous reduced sequence descriptions. In Moody J.E.,

Hanson S.J., Lippman R.P. (eds.), Advances in Neural Information Processing Systems 4
(NIPS-1992), pp. 291-298. San Mateo, CA: Morgan Kaufmann.

Schmidhuber J. (1999). Artificial curiosity based on discovering novel algorithmic
predictability through coevolution. In Angeline P., Michalewicz X., Schoenauer M., Yao
X., Zalzala Z. (eds.), Congress on Evolutionary Computation, pp. 1612-1618.
Piscataway, NJ: IEEE Press.

Schmidhuber J., Wahnsiedler R. (1992). Planning simple trajectories using neural subgoal
generators. In Meyer J.-A., Wilson S.W. (eds.), From Animals to Animats 2: Proceedings
of the Second International Conference on Simulation of Adaptive Behavior (SAB-1992),
pp. 196-202. Cambridge, MA: The MIT Press.

Schoppers M.J. (1987). Universal plans for reactive robots in unpredictable environments. In
Proceedings of the International Conference on Artificial Intelligence (IJCAI-1987), pp.
1039-1046. San Mateo, CA: Morgan Kaufmann.

Schoppers M.J. (1989). In defence of reaction plans as caches. AI Magazine, vol. 10, pp. 51-
60.

Sharkey N.E., Sharkey A.J.C. (1995). An analysis of catastrophic interference. Connection
Science, vol. 7, pp. 301-329.

Singh S.P., Jaakkola T.S., Jordan M.I. (1994). Learning without state-estimation in partially
observable Markovian decision processes. In Cohen W., Hirsh H. (eds.), Proceedings of
eleventh international conference on machine learning, pp. 284-292. New Brunswick,
NJ: Morgan Kaufmann.

Sondik E.J. (1978). The optimal control of partially observable Markov processes over the
infinite horizon: Discounted case. Operations Research, vol. 26, pp. 282-304.

Steels L. (1994). The artificial life roots of artificial intelligence. Artificial Life, vol. 1, pp. 75-
110.

Steels L., Brooks R. (eds.) (1995). The Artificial Life Route to Artificial Intelligence: Building
Embodied, Situated Agents. Hillsdale, NJ: Lawrence Erlbaum Associates.

Sun R. (2000). Symbol grounding: A new look at an old idea. Philosophical Psychology, vol.
13, pp. 149-172.

Sun R., Peterson T. (1998). A hybrid model for learning sequential navigation. In
Proceedings of the IEEE International Symposium on Computational Intelligence in
Robotics and Automation (CIRA-1997), pp. 234-239. Monterey, CA: IEEE Press.

Sutton R.S. (1990). Integrated architectures for learning, planning, and reacting based on
approximating dynamic programming. In Proceeding of the Seventh International
Conference on Machine Learning, pp. 216-224. San Mateo, Ca.: Morgan Kaufmann.

190

Sutton R.S. (1991). Dyna, an integrated architecure for learning, planning, and reacting. In
Working Notes of the 1991 AAAI Spring Symposium, pp. 151- 155. AAAI Press.

Sutton R.S. (1996). Generalization in reinforcement learning: successful examples using
sparse coarse coding. In Advances in Neural Information Processing Systems 8 (NIPS-
1996), pp. 1038-1044. Cambridge MA: The MIT Press.

Sutton R.S., Barto A.G. (1998). Reinforcement Learning: An Introduction. Cambridge, MA:
The MIT Press.

Sutton R.S., Barto A.G., (1990). Time-derivative models of Pavlovian reinforcement. In
Gabriel M., Moore J. (eds.), Learning and Computational Neuroscience: Foundations of
Adaptive Networks, pp. 497-537. Cambridge, MA: The MIT Press.

Sutton R.S., McAllester D., Singh S., Mansour Y. (2000). Policy Gradient Methods for
Reinforcement Learning with Function Approximation. In Solla S., Leen T, Muller K.-R.
(eds.), Advances in Neural Information Processing Systems 12 (NIPS-1999), pp. 1057-
1063. Cambridge, MA: The MIT Press.

Sutton R.S., Precup D., Singh S. (1998). Between MDPs and Semi-MDPs: Learning,
planning, and representing knowledge at multiple temporal scales. Technical report.
Amherst, MA: Department of Computer and Information Science, University of
Massachusetts.

Sutton R.S., Singh S., Precup D., Ravindran B. (1999). Improved switching among
temporally abstract actions. Advances in Neural Information Processing Systems 11
(NIPS-1998). Cambridge, MA: The MIT Press.

Sutton R.S., Whitehead S.D. (1993). Online learning with random representations. In Utgoff
P. (ed.), Proceedings of the Tenth International Conference on Machine Learning
(ICML-193). San Mateo, CA: Morgan Kaufmann.

Tani J. (1996). Model-Based Learning for Mobile Robot Navigation from the Dynamical
Systems Perspective. IEEE Transactions in System, Man and Cybernetics, Part B, vol. 26
(3), pp. 421-436.

Tani J., Nolfi S. (1999). Learning to perceive the world as articulated: An approach for
hierarchical learning in sensory-motor systems. Neural Networks, vol. 12, pp. 1131-1141.

Thrun S. (1992). Efficient exploration in reinforcement learning. Technical Report CMU-CS-
92-102. Pittsburgh, PA: School of Computer Science, Carnegie-Mellon University.

Thrun S. B., Moller K., Linden A. (1991). Planning with an adaptive world model. In
Tourtezky D. S., Lippmann R. (eds.), Advances in Neural Information Processing
Systems 3 (NIPS-1990), pp. 450-456. San Mateo, CA: Morgan Kaufmann.

Trullier O., Meyer J.-A. (1998). Animat Navigation Using a Cognitive Graph. In Pfeiffer R.
(ed.), From Animals to Animats 5: Proceedings of the Fifth International Conference on
Simulation of Adaptive Behavior (SAB-1998), pp. 213-222. Cambridge, MA: The MIT
press.

Tyrrell T. (1993). Computational Mechanisms for Action Selection. PhD thesis. Edinburgh:
Cognitive Science Department, University of Edinburgh.

Tyrrell, T. (1994). An Evaluation of Maes's Bottom-Up Mechanism for Behaviour Selection.
Adaptive Behavior, vol. 2, n. 4, pp. 307-348.

Warren D.H.D. (1976). Generating conditional plans and programs. In Proceedings of the
AISB Summer Conference, pp. 344-354. AISB.

Watkins C.J.C.H. (1989). Learning from Delayed Rewards. PhD Thesis. Cambridge, UK:
King's College, University of Cambridge.

Watkins C.J.C.H., Dayan, P. (1992). Q-learning. Machine Learning, vol. 8, pp. 279-292.
Whitehead S.D., Ballard D.H. (1991). Learning to perceive and act by trial and error. Machine

Learning, vol. 7, pp. 45-83.

191

Widrow B., Hoff M.E. (1960), Adaptive switching circuits, IRE WESCON Convention
Record, Part IV, pp. 96-104.

Wiering M.A., Salustowicz R.P., Schmidhuber J. (1998). CMAC models learn to play soccer.
In Niklasson L., Bod'en M., Ziemke T. (eds.), Proceedings of the Eighth International
Conference on Artificial Neural Networks (ICANN-1998), pp 443-448. Berlin: Springer-
Verlag.

Wiering M.A., Schmidhuber J. (1998). HQ-Learning. Adaptive Behaviour, vol. 6, pp. 219-
246.

Wuensche A. (1998). Discrete Dynamical Networks and their Attractor Basins. Complexity
International. Vol. 6, http://www.csu.edu.au/ci/vol06/wuensche/wuensche.html.

Wyatt J. (1997). Exploration and Inference in Learning from Reinforcement. PhD thesis.
Edinburgh: Department of Artificial Intelligence, University of Edinburgh.

Wyatt J., Hoar J., Hayes G. (1998). Design, analysis and comparison of robot learners. In
Nehmzow U., Recce M., Bisset D. (eds), Robotics and Autonomous Systems - Special
Issue on Quantitative Methods in Mobile Robotics, vol. 24 (nos 1-2), pp.17-32.

Yee R.C., Saxena S., Utgoff P.E., Barto A.C. (1990). Explaining temporal-differences to
create useful concepts for evaluating states. In Proceedings of the Eight National
Conference on Artificial Intelligence (AAAI-1990), pp. 882-888. San Mateo, CA: Morgan
Kaufmann.

Yokoo M., Ishida T. (1999). Search algorithms for agents. In Weiss G. (ed.), Multiagent
Systems, pp. 165-199. Cambridge, MA: The MIT Press.

Yoshikawa T. (1990). Foundations of Robotics: Analysis and Control. Cambridge, MA: The
MIT Press.

Zeller M., Sharma R., Schulten K. (1997). Motion planning of a pneumatic robot using a
neural network. IEEE Control Systems Magazine, vol. 17, pp. 89-98.

