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Abstract 
 
This thesis presents the design, implementation and investigation of some predictive-planning 
controllers built with neural-networks and inspired by Dyna-PI architectures (Sutton, 1990). 
Dyna-PI architectures are planning systems based on actor-critic reinforcement learning 
methods and a model of the environment. The controllers are tested with a simulated robot 
that solves a stochastic path-finding landmark navigation task. 

A critical review of ideas and models proposed by the literature on problem solving, 
planning, reinforcement learning, and neural networks precedes the presentation of the 
controllers. The review isolates ideas relevant to the design of planners based on neural 
networks. 

A “neural forward planner” is implemented that, unlike the Dyna-PI architectures, is 
taskable in a strong sense. This planner is capable of building a “partial policy” focussed on 
around efficient start-goal paths, and is capable of deciding to re-plan if “unexpected” states 
are encountered. Planning iteratively generates “chains of predictions” starting from the 
current state and using the model of the environment. This model is made up by some neural 
networks trained to predict the next input when an action is executed. 

A “neural bidirectional planner” that generates trajectories backward from the goal and 
forward from the current state is also implemented. This planner exploits the knowledge 
(image) on the goal, further focuses planning around efficient start-goal paths, and produces a 
quicker updating of evaluations. 

In several experiments the generalisation capacity of neural networks proves important 
for learning but it also causes problems of interference. To deal with these problems a 
modular neural architecture is implemented, that uses a mixture of experts network for the 
critic, and a simple hierarchical modular network for the actor. 

The research also implements a simple form of neural abstract planning named “coarse 
planning”, and investigates its strengths in terms of exploration and evaluations’ updating. 
Some experiments with coarse planning and with other controllers suggest that discounted 
reinforcement learning may have problems dealing with long-lasting tasks. 
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Vπ[.] Evaluation function depending on the action policy π (argument: a state of 

the world or perception) 
w Vectors or array of weights 
wji Weight between input unit I and feature (or hidden) unit j 
wkj Evaluator's expert k: weight relative to feature unit j 
X The set of possible input vectors 
x, xt An activation vector of input units, activation vector at time t 
xI Activation of input unit I 
y Activation vector of feature (or hidden) units 
yj Activation of feature (or hidden) unit j 
z Vector or array of weights 
zkj Evaluator's gating network: weight relative to gating unit k and feature unit 

j 
γ Discount coefficient 
η, ζ, ξ, ν Learning rates 
π, π* A given policy (or the policy of an option within the theory of opitons), 

optimal policy 
π[. , .] Policy function: probability of action policy (arguments: state and action) 
Σf[.] Sum in f 
µ Global policy (theory of options) 

 



 

 

 
12 

 

1 Introduction 

This introduction illustrates the objective of the thesis' research and the motivations behind it 
(section 1.1). It also introduces the specific issues and problems addressed in the thesis and 
presents an outline of the controllers proposed (section 1.2). 
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1.1 The Objective of the Thesis 

Figure 1.1 presents a graphical summary of the ideas and problems investigated in the thesis. 
The main objective of the thesis can be defined as follows: Designing and investigating 
taskable predictive-planning controllers implemented with neural-networks. 

The terms used in the definition of the thesis's objective are going to be precisely 
specified in s. 4.1 (neural networks) and 5.1 (taskable predictive planning). However, at least 
some approximate definitions are necessary for this introduction. “Predictive planning” can be 
defined as any information processing carried out by an agent, that constrains the agent’s 
future course of action and is based on the agent's capacity to predict the consequences of its 
actions. A controller is “taskable” if it is capable of pursuing a goal (“desired state”) assigned 
to it for the first time, on the basis of the use of previously acquired goal-independent 
information (cf. s. 5.1). “Neural networks” are systems made of simple units that exchange 
signals in parallel through a network of connections, and process the signals received in 
simple ways (cf. s. 4.1). 
In pursuing the thesis' objective it has been decided to try to satisfy two requirements: 
• The controllers should be capable of guiding a simulated robot that interacts with noisy 

environments. 
• The controllers should be inspired by reinforcement learning and dynamic programming 

methods. 
The following subsections first present the motivations for the choice of the thesis's objective 
and the motivation for adopting the requirement of a simulated robot interacting with a noisy 
environment. Then they present a brief review of the reinforcement learning framework and 
its possible use for planning. Successively they introduce some ideas drawn from problem 
solving and logical planning that inspired some aspects of the controllers implemented here, 
and present the reasons for which reinforcement learning, and in particular Dyna-PI 
architectures, have been adopted as a framework to tackle the research's objective (second 
requirement). Finally they briefly present the tasks that have been used to test the controllers. 

1.1.1 Why Neural-Network Planning Controllers? 

When used for control, neural networks usually play the role of “reactive devices” that yield a 
behaviour by directly mapping input sensorial patterns into output behavioural patterns (c.f. 
several works in Miller et al., 1990). Are neural networks suitable to implement “deliberative 
processes” where the input-output association is indirect, i.e. interleaved by some 
sophisticated information processing? Planning is a suitable candidate to attempt to answer 
this question. In fact, planning requires a “looping” information processing. This processing is 
necessary because planning implies that the prediction of the effects of actions' execution, 
produced by the system, is fed back into the system itself. Moreover, there is much literature 
on planning since it has been extensively studied by artificial intelligence since its birth (Fikes 
and Nilsson, 1971). Finally, planning is also very important for control (Russell and Norvig, 
1995; Arkin, 1998). 

Another issue that motivated the thesis's object, which is closely related to the previous 
one, is as follows. Many classic artificial intelligence planning systems are based on logical 
information representations that are set a-priori by the researcher (cf. several examples in 
Allen et al., 1990). Originally (e.g. the first version of the robot Shakey in 1969, cf. Russell 
and Norvig, 1995, pp. 787), when these planning systems were used to control robots, the 
sensors' readings were converted into logic representations, the control was implemented in 
terms of manipulations of these representations, and then the outcome of this processing was 
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converted into effectors' commands (cf. top part of Figure 1.2). This approach has difficulties, 
as the time-consumption of logical reasoning about the effects of low-level actions is too 
expensive to generate real-time behaviour (Russell and Norvig, 1995, p. 788). 
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strong invariances of the environment, are not very flexible, and are non-taskable in a strong 
sense (Russell and Norvig, 1995, p. 790; Arkin, 1990, p. 206; cf. also s. 5.1). 

The limitations of these approaches has led to the proposal of several “hybrid 
architectures” where a “reactive layer” uses quantitative/rule representations and the 
“deliberative layer” (planning) uses logic-like and abstract representations (Mitchell, 1990; 
Gatt, 1992; Morasso et al., 1992; Noreils and Chatila, 1995; Arkin, 1989, pp. 205-235, for a 
review). Unfortunately, also these systems have a significant limitation: they imply a repeated 
double recoding of information from a numerical format to a logic format and vice versa (cf. 
top of Figure 1.2). Indeed, the interface between the planning and the reactive components of 
these systems is difficult to implement, slow, and prone to errors (cf. Arkin, 1990). 

The motivation of this thesis is to build reactive and planning systems that rely only on 
numerical representations. This novel approach should allow coping with noisy and 
unpredictable environments through reactive behaviours, having the flexibility of planning, 
and avoiding the problem of the interface between different information representation 
formats (see bottom part of Figure 1.2). Given the level of development that they have 
reached (cf. Haykin, 1999), neural networks have been chosen to pursue this goal (cf. s. 4.5 
for a review on existing planning systems based on neural networks). This attempt is a 
challenge that is hard and interesting at the same time. In fact its solution implies to answer a 
number of questions of this type: How implementing the “looping” information processing 
required by planning with neural networks? What kind of information representations can be 
used to plan with neural networks? Can the neural system acquire the information needed to 
plan by experience? How can the neural planning process be used to influence future action? 
What are the advantages and disadvantages of using neural networks versus logic-based 
algorithms to implement planning? 

1.1.2 Why a Robot and a Noisy Environment? Why a simulated robot? 

As shown in Figure 1.1, it has been decided that the controllers designed should satisfy two 
requirements. The first requirement is that the planning controllers should be capable of 
guiding a simulated robot interacting with a noisy environment. This requirement is explained 
in this subsection. The second requirement is that the planning controllers should be based on 
the ideas of Dyna architectures (actually this is more a “decision” about where to look for 
solutions than a proper “requirement”). This requirement is illustrated in section 1.1.5. 

Before illustrating the first requirement, the attention of the reader is drawn on the fact 
that the emphasis that this section puts on the use of a simulated robot for testing the 
controllers should not give rise to the idea that the thesis is mainly about robotics. In fact, as 
stated in section 1.1, the focus of the thesis is the development, implementation and testing of 
planning controllers based on neural networks. 

The first constraint has been chosen because the author was interested in studying 
planning in a difficult context: one where a simulated robot perceives the environment 
through noisy and limited sensors and interacts with the environment with noisy effectors (cf. 
Brooks, 1986; Steels and Brooks, 1995). Such type of domains present problems that are 
different from those that arise from domains where planning agents interact with “engineered 
environments”, such as the Internet. For example, as we shall see in s. 1.1.5, the fact that the 
effects of the actions are noisy and only partially predictable has fundamental implications for 
the principles and methods that can be employed for planning. 

It has also been decided to study planning with a simulated robot and environment 
instead of a real robot. Simulations have disadvantages and advantages. The disadvantages 
are that simulations are usually simplified and their results do not entirely match the results 
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that can be obtained with physical experimental sets because simulations rarely capture the 
“full and infinite complexity” of reality (Steels, 1994; Nolfi et al., 1994; Jakobi et al., 1995; 
Steels and Brooks, 1995; Lee et al., 1998; Nehmzow, 2001). The advantages are that 
simulations are fast and cheap, allow the researcher to easily vary the robot's “body” (sensors, 
effectors, etc.), facilitate repeated experiments under identical conditions, and allow running 
experiments that cannot be easily executed with physical devices (Lee et al., 1998; Miglino et 
al., 1995). These advantages usually make simulations preferable in the initial phase of 
development of innovative controllers. In fact, in this phase it is usually necessary to change 
the physical properties of the robot to explore a wide range of scenarios and tasks, and to run 
a considerable number of experiments in a short period of time. 

An example of the role played by simulations in developing controllers is reinforcement 
learning, the framework adopted in the thesis. The majority of new reinforcement learning 
techniques have been developed and tested with simulated agents and worlds. For example 
this has been true for: the “actor-critic methods” (Barto et al., 1983); the “Dyna-PI 
architectures” (Sutton, 1990); “prioritised sweeping” (Moore and Atkeson, 1993); “temporal 
abstract reinforcement learning” (Sutton et al., 1998); cf. Sutton and Barto (1998) for many 
other examples. This has not prevented reinforcement learning techniques from becoming 
some of the most widely used techniques to control physical robots (cf. the proceedings edited 
by Meyer et al., 2000). 

Given the advantages rendered by simulations in the initial phase of development of new 
controllers, here it has been decided to use a simulated robot and simulated environments. 
These simulated robot and environments try to maintain the interesting problems raised by the 
control of real robots in real environments, such as continuous interaction with the 
environment, perception through noisy and limited sensors, action through noisy effectors. 
This should facilitate the further development and application of these same controllers to real 
robots. 

1.1.3 Reinforcement Learning, Dynamic Programming and Dyna Architectures 

As mentioned, a second requirement has been chosen for the controllers: they should be based 
on the reinforcement learning framework. This subsection briefly introduces the major aspects 
of this framework (cf. chapter 3 for details), while s. 1.1.5 explains why this framework has 
been adopted. 

The expression “reinforcement learning framework” is used here, as in the title of the 
thesis, to refer to a constellation of methods and theories that have been developed 
independently, but then have been shown to have important common principles (cf. chapter 
3). These methods and theories are: “Markov Decision Processes” (MDP), “Reinforcement 
Learning” (RL), “Dynamic Programming” (DP) and “Dyna-PI architectures” (the acronyms 
are indicated because they are often used in the literature, but the extended terminology is 
used here to ease the reading). 

Markov decision processes (Puterman, 1994) and reinforcement learning (Barto et al. 
1983; Barto et al., 1990; Kaelbling et al., 1996; Sutton and Barto, 1998) are among the best 
theories currently available to frame sequential decision problems under uncertainty (Russell 
and Norvig, 1995, p. 498; they are also referred to as “Markov decision problems” or 
“reinforcement learning problems”). They assume that an agent knows exactly the current 
state of the world (“Markov assumption”) and has to select and execute an action among a set 
of available actions. As a consequence the environment returns a new state according to some 
given probabilities distributed over the possible states, called “transition probabilities”. 
Positive or negative “rewards” (or “utilities”) are assigned to some states and a 0 reward is 
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assigned to the remaining states (e.g. in the stochastic path-finding problems, cf. s. 1.1.6, the 
“goal-state” is assigned reward +1, while all the other states are assigned reward 0). 

Within this stochastic context the concept of “plan” (a sequence of “operators” to 
execute) employed in the classic artificial intelligence searching and planning literature, is 
substituted by the concept of “policy”. A policy associates an action probability distribution 
with each state. This distribution determines the probabilities that the agent will select each 
action. The strength of the idea of “policy” is that whatever the consequences of an action are 
in terms of the new state reached after its execution, the agent is not committed by any 
previous decision and can decide what to do on the basis of the new state itself. The agent's 
task is to find an optimal (or near-optimal) policy, i.e. a policy that (in the most popular 
formulation of reinforcement learning tasks) maximises the expected future discounted 
rewards starting from each possible state. In the case of the stochastic path-finding problems 
this means that the agent has to find a policy that leads from the start state to the goal state 
following the most direct path, notwithstanding the perturbations caused by noise. 

Now let us consider dynamic programming methods. Given a reinforcement learning 
problem, if a model of the environment is available, dynamic programming methods (Ross, 
1983; Bertsekas, 1995) are capable of generating optimal policies by using it. A model of the 
environment is made up of two components. The first component, the “state transition 
function”, returns the state achieved after selecting a particular action at a given state on the 
basis of the transition probabilities. The second component, the “reward function”, returns the 
reward associated with the execution of a given action in a given state. Dynamic 
programming methods are based on the generation of a gradient field of “evaluations”, 
associated with the states, that are higher for states closer to states with high positive rewards 
(e.g. the goal state). The evaluations of all the states are computed iteratively and in parallel 
(“full sweep”). The evaluation of one state is updated on the basis of the approximate 
evaluation of all the states reachable from it and on the basis of the transition probabilities 
(“full back-up”). At execution time, dynamic programming selects the actions that ascends the 
gradient field along the steepest direction (policy). Clearly, dynamic programming 
implements a form of planning since it uses a model of the environment to guide the course of 
action. 

Given a reinforcement learning problem, if a model of the environment is not available 
reinforcement learning algorithms (Sutton and Barto, 1998) are capable of finding a policy by 
using a trial-and-error process directly executed in the environment. Similarly to dynamic 
programming, reinforcement learning algorithms compute state evaluations and action 
policies based on those evaluations. However, unlike dynamic programming, they update the 
state evaluations and the action policies by executing actions in the environment and by 
observing the consequences in terms of states reached and rewards obtained (“sample back-
up”). As a consequence, the updating of evaluations and policy affects only the states actually 
visited (“focussing”; however the convergence of reinforcement learning algorithms usually 
requires that all states are visited an infinite number of times, cf. Sutton and Barto, 1998). 
With more experience, the state evaluations become more accurate and the policy changes 
towards the optimal one. 

In reinforcement learning the policy is usually generated dynamically from the 
evaluations each time that the agent needs to select an action (cf. the popular Q-Learning 
algorithm, Watkins, 1989, and Watkins and Dayan, 1992, reviewed in s. 13.2.3). The 
controllers designed and implemented here are based on the “actor-critic reinforcement 
learning methods” (Barto et al., 1983; Sutton and Barto, 1998). Actor-critic methods are 
characterised by two memory structures, one to store the evaluations, and one to store the 
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policy probabilities. This research has chosen to adopt actor-critic reinforcement learning 
instead of other reinforcement-learning methods for the following reasons: 
• Convergence of reinforcement learning that uses a differentiable function approximation, 

that satisfy some particular conditions, has been demonstrated only for the case of actor-
critic methods (i.e. methods that use “Policy Iteration”, see Sutton et al., 2000). 

• The best stochastic policy can be better than the best deterministic policy in Partially 
Observable Markov Decision Processes (Singh et al, 1994; Jaakkola et al., 1995; cf. s. 
13.2.2). 

• The author is interested in actor-critic models because they are more biologically 
plausible than other reinforcement learning models (Sutton and Barto, 1990; Houk et al., 
1994; Sutton and Barto, 1998; Baldassarre and Parisi, 2000; Baldassarre, 2001b; 
Baldassarre, 2001e). 

Sutton (1990) has integrated dynamic programming and reinforcement learning into a class of 
architectures called “Dyna” (“Dyna” stands for “dynamic programming”). When the Dyna 
architectures are based on actor-critic reinforcement learning methods they are called “Dyna-
PI architectures” where “PI” stands for “policy iteration”, the key process at the base of actor-
critic methods (cf. s. 13.2.3). The basic idea of Dyna architectures is to have a reinforcement 
learning architecture that is trained in the environment but also through a model of the 
environment used to generate “simulated” extra experience, similarly to what is done in 
dynamic programming. 

The new controllers presented in the thesis are inspired by Dyna-PI architectures. These 
controllers overcome some drawbacks of Dyna architectures concerning predictive planning 
and taskability (cf. s. 5.1 and 8.3.2). Once this is done, these controllers are used to investigate 
the advantages and disadvantages of implementing planning with neural networks (s. 1.2 
presents an overview of the issues explored). 

1.1.4 Ideas from Problem Solving and Logical Planning 

The field of problem solving and search strategies (Korf, 1988; Russell and Norvig, 1995, pp. 
55-121; cf. s. 2.2 for a review) tackles problems where an agent has to find a sequence of 
states that lead from a starting state to a goal state. In some problems this is done on the basis 
of information about the approximate (usually optimistic, or “admissible”) “heuristic”, i.e. the 
estimate of the cost from each state to the goal. Interestingly the concept of state evaluations 
on which dynamic programming and Dyna architectures are based is related to the concept of 
“heuristic” employed within problem solving. For example, it has been shown that a particular 
form of dynamic programming, namely “trial-based real-time asynchronous dynamic 
programming”, is equivalent to a particular form of heuristic search, namely “learning real-
time A*” (Barto et al., 1995). As we shall see in s. 13.2.11 these two methods are equivalent 
because the evaluations and the heuristic values that they respectively learn, have a close 
correspondence. 

This research has isolated some ideas developed within problem solving that could 
inspire the design of the neural planning controllers presented later. Notice that the original 
ideas from problem solving could not be directly applied in the new context, mainly because 
problem solving has been developed for deterministic environments, while the neural planners 
considered here should be capable of dealing with stochastic environments. The following 
ideas proposed by the problem solving literature have been relevant to develop the controllers 
proposed here: 
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• Achieving a full taskability of the neural planners through the use of a neural network 
that can establish if the current state is similar enough to the current state (analogously to 
the idea of “goal test” used in problem solving, cf. s. 2.1). 

• Implementing planning in terms of an exploration of the model of the environment from 
the start and from the goal (analogously to the idea of “bidirectional search”, cf. again s. 
2.1). 

• Executing iterative deepening explorations of the model of the environment (analogously 
to the idea “iterative deepening search”, cf. again s. 2.1). 

Planning is the field of artificial intelligence that has traditionally tackled the problem of 
deciding the future course of action on the basis of the agent's capacity to predict its 
consequences. Planning is applied to problems similar to those of problem solving and is 
closely related to it. Planning differs from problem solving because it “breaks” the 
“monolithic” representation of state used in problem solving into logical statements (“STRIPS 
representation”). This operation allows planning to gain in efficiency when looking for a 
solution of the problem (cf. s. 2.3 for details). Unluckily this strategy cannot be directly 
followed when using neural networks (cf. s. 2.3.3 for details). Notwithstanding this, this 
research has attempted to suitably transform and transfer some ideas developed within 
planning to the design of the neural planning controllers based on reinforcement learning. In 
particular the following ideas have been considered for this research: 
• Importance of planners being able to deal with uncertain outcomes of actions (cf. s. 

2.4.1). 
• Necessity of finding a balance between “conditional planning” (this kind of planning is 

close to the idea of “policy”; cf. s. 2.4.1) and “re-planning” (this is a kind of planning that 
stops the action to improve/formulate a new plan in particular circumstances; cf. s. 2.4.2). 
The planners designed and implemented here offer a solution to this problem, based on 
the “confidence in action” of the agent (cf. s. 8.3.2). 

• Non-scalability of “universal planners” (cf. s. 2.5.2): this same problem applies to the 
concept of “policy” (cf. s. 2.5.5). 

• Importance of “abstract planning”: here a controller that implements a simple form of 
abstract planning is proposed (cf. s. 2.4.3 and chapter 11). 

1.1.5 Why Dyna-PI Architectures (Reinforcement Learning + Model of the 
Environment)? 

In s. 1.1.3 the main concepts at the basis of reinforcement learning and Dyna architectures 
have been introduced. Why has this framework been chosen to build the neural network 
planners presented here? This subsection answers this question. Dealing with agents that act 
in noisy environments has important implications for planning. The first STRIPS planners 
(Fikes et al., 1971) had several problems in dealing with these kinds of environments. In fact 
they decided the course of action a-priori on the basis of a model of the environment that was 
assumed to be perfect, and then they executed the actions in the environment in a “blind” 
way, i.e. without monitoring the effects of the execution of actions. The problems derived 
from the fact that the execution of actions often resulted in effects different from the expected 
ones (Russell and Norvig, 1995, p. 392 and p. 787). Later versions of these planners offered 
some solutions to deal with these problems. For example they contemplated a-priori different 
possible outcomes of actions (e.g. cf. “conditional planning”, Warren, 1976; see s. 2.4.1) or 
monitored the effects of actions' execution (e.g. IPEM, Ambros-Ingerson and Steel, 1988; cf. 
s. 2.4.2). 
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This approach has gone even further. If an agent has an “action function” (e.g. a look-up 
table or a set of condition-action rules) that specifies what action to select in correspondence 
to a given state, it does not need to worry about unexpected developments in the environment. 
All it has to do is to execute whatever action the action function recommends for the state in 
which it finds itself. The field of “reactive planning” aims at taking advantage of this fact, 
thereby avoiding the complexities of planning in dynamic, inaccessible environments. 
“Universal plans” (Shoppers, 1987; Shoppers, 1989; cf. s. 2.5.2) were developed as a general 
scheme for reactive planning. A universal plan is a function f that maps the set of states S into 
the set of action A, i.e. f: S → A. In an initial phase the planning process “compiles” 
information into the universal plan. Successively the universal plan is used to act in the world 
in a reactive fashion. Interestingly reactive planning turned out to be a rediscovery of the idea 
of policy of Markov decision processes, used throughout this research (Russell and Norvig, 
1995, 411). 

Are Markov decision processes and the concept of policy the final solution for planning 
in stochastic environments? Probably not. This approach, like universal planning, also has 
important limitations (Ginsberg, 1989). The most important ones derive from this fact: the 
system has to know what to do for every possible state. This implies two problems if the state 
space is big, as in the majority of realistic problems. The first problem is that a lot of time is 
needed to prepare (“compile”) the plan since the agent needs to decide what to do for every 
possible state. The second is that a big memory structure is needed to store the “compiled” 
plan. Using function approximation methods such as neural networks can alleviate these 
problems (Sutton and Barto, 1998, p. 193; cf. s. 13.2.7 and 4.4.1). However, these problems 
are still central for planning since one of the strengths of planning is precisely that it allows 
agents to quickly prepare a plan focussed on few important states (cf. s. 2.4 and 8.3). 

Given these considerations, it is likely that the optimal solution is between the two 
extremes of having rigid plans (plus re-planning in the case of failure) and universal planning 
(cf. Russell and Norvig, 1995, pp. 407-409). This means that a good strategy would be to plan 
when necessary, to build plans with a certain degree of robustness that can deal with some 
unexpected but likely outcomes (i.e. to focus planning on states that are likely to be visited), 
and to re-plan when actions' outcomes are different from those expected. As we shall see the 
controllers implemented in this thesis have such properties. In fact they are inspired by the 
Dyna-PI architecture (the basic version of this is an instance of universal planners) but they 
also incorporate some aspects of re-planning and planning focussed on relevant states. 

A last reason (quite different from the previous ones) for which reinforcement learning 
and Dyna architectures have been chosen to implement planning, is one particular interest of 
the author related to the development of animals' brain during natural evolution: what is the 
minimal “machinery” that needs to be added to a reactive learning controller to obtain a 
planning controller? Though interesting, this aspect has not been developed in the thesis to 
preserve its focus on computational issues (but cf. Baldassarre and Parisi, 2000; Baldassarre, 
2001b; Baldassarre, 2001e; Baldassarre, 2002). 

1.1.6 Stochastic Path-Finding Landmark Navigation Problems 

This section describes the type of tasks that have been used to test the controllers designed 
and implemented here (cf. s. 3.1 for a formal formulation). We have already seen the nature of 
reinforcement learning problems. Broadly speaking, these problems are characterised by fact 
that they do not have a termination. Several states of the space problem have a positive reward 
associated with them, and the agent has to behave so that in each state it maximises the sum of 
the expected discounted future rewards (Sutton and Barto, 1998, p. 60-61). In s. 5.1.4 we will 
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see that Dyna architectures, that are capable of dealing with this broad category of problems, 
are not “taskable” when planning. In fact each new goal implies a new reward function, and 
this reward function has either to be learned by the agent by experiencing the goal itself, or it 
has to be provided by the designer. We will see that a solution of this problem is to restrict the 
category of problems that the controllers can tackle to “stochastic path-finding problems”. 
Stochastic path-finding problems are similar to the problems of “problem solving”: the agent 
has to find the most direct path from a start state to a goal state. 

The particular stochastic path-finding problems used in this thesis are “landmark 
navigation problems”. In these problems the agent has to reach a goal position from a start 
position in a two (or n) dimensional space, by referring to the view (or other similar 
information) of some landmarks spread in the environment. In the problems considered here a 
simulated robot moves in a continuous two-dimension space where there are few landmarks 
(with the exception of chapter 11, in the simulations considered here the robot can cover one 
side of the arena in 20 moves). 

It is important to consider why the use of a simulated robot makes the problem more 
interesting and complex in comparison to the problems usually considered within problem 
solving. To understand this complexity it is useful to look at the problem from the point of 
view of the simulated robot employed here. The simulated robot perceives the environment 
through a horizontal one-dimensional binary retina, always aligned with the simulated 
magnetic north. The retina returns a vector of 50 bits corresponding to the activation of its 
pixel sensors (250 possible configurations). The simulated robot can move in the arena by 
executing one step in the 8 compass directions (north, northeast, east, etc.). The simulated 
robot's task is to move to a position where the retina is activated in a way similar to a given 
template assigned to the robot itself (goal). Both actions and perceptions are affected by noise. 
In contrast to problem solving tasks, no information is furnished to the simulated robot about 
which state is a neighbour of which state. If the agent wants to plan, it first needs to “learn” 
this relationship between states in terms of “which state results from which action executed in 
which state” (model of the environment). Moreover, when it “plans” it has to consider that its 
model is imperfect because of noise, and that the execution of an action in identical conditions 
may produce different outcomes because of noise. 

Notice that in the task just described no particular landmark or signal emitter marks the 
goal position. The goal position is recognisable only when it is reached, because it matches 
the given template. The literature considers this type of problem (e.g. McGovern et al., 1997; 
Trullier and Meyer 1998) much more challenging than path-finding problems where there are 
signal emitters or special markers at the goal position (e.g. Rummery and Niranjan, 1994; Sun 
and Peterson, 1998). In fact in the problems considered here the simulated robot has to be 
capable of selecting a particular action in correspondence with a view of the environment. 
Instead, in the easier case where there is an emitter or special marker at the goal position the 
direction of the goal is available at each position visited, so the agent can solve the problem 
by simply aligning the direction of its movement with the direction of the goal (while “local” 
information is usually used to avoid obstacles). 

Although the controllers have been tested only with landmark navigation problems, 
efforts have been made to design controllers that are general and also applicable to other 
problem domains. In the course of the thesis it will be stated clearly when this has not been 
possible, i.e. when some aspects of the controllers rely upon specific features of landmark 
navigation problems. The thesis will also illustrate some results related to the particular nature 
of landmark navigation tasks when tackled with reinforcement learning and neural networks. 
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1.2 Overview of the Controllers and Outline of the Thesis 

The thesis is divided in two parts. The first part (chapters 2 to 5) presents a critical literature 
review and an analysis of the ideas and principles relevant for neural planning. The second 
part (chapters 6 to 11) presents some new neural-network planners and an empirical analysis 
of them through simulations. The thesis is also divided in chapters, sections and subsections 
(for ease of reference, sections and subsections are referred to as “sections” or “s.” for short, 
for example “cf. s. 1.2”). 

1.2.1 Overview of the Controllers Implemented in this Research 

The continuity of the thesis is guaranteed by two elements. The first is that the controllers 
presented in the thesis are built incrementally through the chapters, i.e. each new controller is 
built by adding new components to the previous controller. The second is the nature of the 
problems addressed. The first aspect is discussed here, while the second is discussed in s. 
1.2.2. The whole final controller is reported in Figure 1.3. The reader can read the label of this 
figure to gain an idea of the architecture of the controllers, and skip the rest of this section, or 
read the general description of them that follows. 

 

 

 

 

 

 

 

 

 

 

Figure 1.3: The final controller presented in the thesis developed incrementally through the chapters. 
Networks with a bold border implement a simple reinforcement learning controller (chapter 6), or a 

modular neural reinforcement learning controller (chapter 7). Networks with a thin border implement 
forward planning (chapter 8). Networks with a dashed border implement bidirectional planning 
(chapter 9). The whole system implements bidirectional planning with modular neural networks 

(chapter 10). The whole system without modularity has been used to implement forward and backward 
planning with a simple kind of abstraction called “coarse planning” (chapter 11). Numbers indicate the 

number of units of each neural layer. Stars indicate the points where the information flows between 
the modules are enhanced or blocked during acting or planning. 

 

Figure 1.3 shows that the controllers are mainly composed of two-layer feed-forward 
neural networks connected in a direct or re-entrant way between them, or with the 
environment. The core of the algorithm is made up by the actor, the evaluator and the TD-
critic networks that together implement an actor-critic reinforcement learning system. The 
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evaluator has the role of learning the evaluations of the states, and hence of producing the 
gradient field of evaluations, and the actor has the role of learning the policy on the basis of 
such a gradient field, and hence of selecting the actions. This basic model has been tested in 
two versions: one where the actor and evaluator are simple “monolithic” networks (chapter 6) 
and one where the evaluator and actor are “modular networks” (chapter 7). Both these models 
learn by interacting with the environment. 

The “neural forward planner” (chapter 8) is built by adding two further networks to this 
basic model. The first network is the matcher, a network capable of deciding if the current 
state is or is not the goal. This network produces the reward signal used to train the evaluator 
and actor. It corresponds to the “reward function” part of the model of the environment. The 
second network is the predictor, a network capable of predicting the next state that will follow 
the execution of an action in correspondence to a given state. It corresponds to the “state 
transition function” part of the model of the environment. A hardwired algorithm, the “action-
planning controller” showed in Figure 1.3, decides when to act and when to plan. This 
algorithm also controls the flows of information between the networks of the system, the 
sensors, and the effectors, by “opening and closing” the flows at the level of the stars 
indicated in the figure. 

Given that planning is central to the thesis, it is useful to briefly anticipate how the neural 
planning process works in these systems. In the forward planner, planning takes place through 
reinforcement learning executed within the model of the environment rather than in the actual 
environment. When the system plans, it generates repeated sequences of projections into the 
future starting from the current state. To this end, the actor selects an action, the predictor 
predicts the next state on the basis of the action and the current state; this predicted state is 
sent back to the actor and the predictor (re-entrant connections); the actor selects another 
action and the predictor generates another predicted state, so the process goes on generating a 
“trajectory” into the future. While many trajectories are generated, the evaluator and actor are 
trained as it would be done in the case of training in the actual environment. When the 
controller is “confident” enough, i.e. it assigns high probabilities to one or few actions in 
correspondence to the current state, the policy expressed by the actor is executed in the 
environment. 

The “neural bidirectional planner” (chapter 9) works similarly to the forward planner. 
The main difference is that it generates sequences of actions and predictions both forward 
from the current state and backward from the goal. This bidirectional planner is built by 
adding two neural networks to the forward planner. The first neural network, the “back-
actor”, is capable of “guessing” which was the action that led to a particular state. The second 
neural network, the “back-predictor”, is capable of “back-predicting” what could have been 
the state that brought to a given state by executing the action yielded by the back-actor in 
correspondence to this given state itself. 

Both the forward and bidirectional planners are also endowed with a modular evaluator 
and actor and tested with a multi-goal task (chapter 10). Finally, the forward planner is used 
to implement a simple form of abstract planning based on the repetition of actions of the same 
kind (e.g. “north, north, north”, chapter 11). 

1.2.2 Outline of the Thesis and Problems Addressed Chapter by Chapter 

The second element of continuity across the chapters is the nature of the problems addressed. 
These are all related to the objective of the thesis: developing taskable predictive-planning 
neural controllers inspired by the Dyna-PI architecture. These problems are now introduced 
by presenting an outline of the thesis chapter by chapter. 
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First Part. The first part, from chapter 2 to 5, has two objectives. The first is to present a 
literature review of the frameworks within which the controller have been developed. The 
second is to present a critical analysis of the strengths and weaknesses of these contributions 
with the aim of isolating ideas and principles that can be useful to implement planning with 
neural networks. 

 
Chapter 2. Chapter 2 first presents the algorithms used by blind and heuristic search, and 
refers the reader to the appendices for details. Heuristic search is particularly important 
because it has strong connections with dynamic programming and reinforcement learning 
methods in general. The chapter continues by presenting a review of planning. Important 
ideas, as “re-planning” and “conditional planning”, are discussed here. 

 
Chapter 3. This chapter introduces the Markov decision processes, the reinforcement 
learning problem, the actor-critic models, dynamic programming, the correspondences 
between dynamic programming and heuristic search, and refers the reader to the appendices 
for the mathematical details. The chapter also presents the details of path-finding problems 
(the class of problems dealt with in the thesis), Dyna and Dyna-PI architectures, and the issue 
of how focussing planning on limited areas of the state space. The review of these techniques 
is accompanied by comments on their relevance for neural planning. 
 
Chapter 4. This chapter starts by defining neural networks and by analysing their properties 
relevant for planning. Then the reader is referred to the appendices for a mathematical 
presentation of the feed-forward neural networks, the back-propagation algorithm, and the 
“mixture of experts networks”, that are building blocks used in the controllers presented here. 
The chapter ends by reviewing some of the most important existing planning systems based 
on neural networks. 
 
Chapter 5. This chapter presents a formalisation of learning of behaviour and taskable 
planning, and uses it to show that the Dyna-PI planner is not taskable in a strong sense. Then 
it presents a unified view of some heuristic search methods, some reinforcement learning and 
dynamic programming methods, and the activation diffusion planning method. This unified 
view is centred on the idea of evaluation gradient field. Finally it summarises the nature, 
advantages and disadvantages of “plans” in comparison to “policies”. 
 
Second Part. The second part of the thesis, from chapter 6 to chapter 11, illustrates, 
implements and empirically tests some neural reactive and planning controllers based on the 
ideas presented in the first part. 
 
Chapter 6. This chapter introduces the simulation scenarios used throughout the research. 
Then it presents the neural controller based on the actor-critic model, which is at the core of 
all the controllers implemented in the following chapters. Some simulations investigate the 
functioning, the strengths (such as the generalisation capacity) and the drawbacks (such as the 
aliasing problem) of this controller, and provide some data useful for interpreting the results 
of the succeeding chapters. Some other simulations suggest that discounted reinforcement 
learning has problems in dealing with long periods of time. This issue is very important for 
planning, as planning expresses its full power when it deals with long periods of time. 
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Chapter 7. This chapter addresses the problem of interference. This is an important problem 
encountered when planners have to accomplish several tasks. To tackle this problem, a multi-
goal version of the landmark navigation problem is introduced, where the simulated robot has 
to pursue different goals at different times. A new controller is designed and implemented that 
deals with the problems caused by interference through “emergent functional modularity”. In 
this controller a “mixtures of experts network” is employed to implement the evaluator 
(evaluation function) and a novel hierarchical network to implement the actor (policy). 

 
Chapter 8. This chapter deals with the problems of taskability of the Dyna-PI architecture, 
and with the problems of focussing planning around relevant states and interleaving acting 
and planning. Afterwards, the chapter presents a “neural forward planner” that offers a 
solution to these problems. In particular the forward planner is taskable, is capable of 
focussing planning on relevant states, and is capable of deciding when to act and when to 
plan. In comparison with the basic version of the Dyna-PI architecture and the classic 
artificial intelligence planners, the controller is new in that: 
• Most of its components are implemented with neural networks. 
• It generates the reward internally by comparing the states visited with the goal state 

through the “matcher”. The matcher allows the controller to be taskable in a strong sense. 
This differs from the Dyna-PI architectures where the reward function has to be learned 
for each new goal assigned to the agent or has to be furnished by the user/designer. 

• The controller decides whether to plan or to act on the basis of its “confidence” in action. 
The confidence is computed on the basis of the probabilities of selecting the different 
actions. 

• A new algorithm is designed and implemented to guide the “simulated experiences” 
while planning. As mentioned previously, this algorithm iteratively explores the model of 
the environment starting from the current position in search for the goal. The length of 
these explorations increases with failure, and decreases with success, at achieving the 
goal. 

• Contrary to classic artificial intelligence planners, the “model of the environment” is 
learned through a modular neural-network, the “predictor”. The experiments show that 
the predictor has an interesting capacity to maintain the coherence between the states 
predicted while planning and real states, probably because the patterns that correspond to 
real states are a sort of “attractor” for the predicted states. 
 

Chapter 9. The problem addressed in this chapter is how to further focus planning on 
relevant regions of the state space. While planning the controller presented here, the “neural 
bidirectional planner”, carries out both forward searches from the current state, and backward 
searches from the goal. In comparison to the forward planner of chapter 8, this controller 
shows a better capacity of focussing “planning search” around the goal and quickly 
propagating the evaluations backward from the goal. The chapter also shows that the 
drawbacks of the controller are its architectural complexity and the need to generate simulated 
experience backward from the goal. 

 
Chapter 10. This chapter addresses the problem of generalisation, interference and 
modularity, introduced in chapter 7, within planning. To this purpose it compares the 
performance of the reactive controller, forward planner, and bidirectional planner within the 
asynchronous multi-goal task. This test is important since planning tends to exacerbate 
interference problems because it focuses search on the same goal for a long time. 
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Chapter 11. This chapter addresses the problem of how implementing abstract planning with 
neural network systems. In particular it explores a simple form of abstraction, called “coarse 
planning” for reference. Coarse planning is based on planning with “coarse actions”, i.e. small 
sequences of primitive-actions of the same kind, and acting with “primitive-actions”. Some 
simulations also investigate the problem of the temporal limits of discounted reinforcement 
learning, introduced in chapter 6, within the context of coarse planning. 

 
Chapter 12. This chapter summarises the main passages of the thesis, highlights the most 
important insights achieved, and suggests the future work to do to continue the research 
started here. 
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PART 1 

CRITICAL LITERATURE REVIEW AND ANALYSIS 
OF CONCEPTS USEFUL FOR NEURAL PLANNING 

 
This first part of the thesis has two objectives: 
• To offer a review of the results of four fields of artificial intelligence relevant for this 

research. These fields are “blind” and “heuristic” search, planning, reinforcement learning 
and dynamic programming, and finally neural networks. 

• To present critical observations that evaluate the relevance, strength and drawbacks of the 
different approaches/algorithms/systems presented, in order to isolate some ideas and 
principles that might be useful to design neural planners. 

To highlight the original elaboration of the material, the review part will be contained in 
standard sections, while the critical observations will be presented in sections titled “critical 
observations” (when observations presented by these sections are not original, references will 
be given). 
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2 Problem Solving, Search, and STRIPS Planning 

Broadly speaking, problem solving and planning are two fields of artificial intelligence that 
study agents whose task is to “search” a “sequence of actions” (“operators”) that bring from 
an “initial state” to a “goal state” through the “state space”. As we shall see the main 
difference between the two fields is that problem solving treats goal, states and actions as a 
whole, while planning decomposes them into parts each represented by a logical description 
(Russell and Norvig, 1995, p. 339). This opens up a number of possibilities that make the 
search of a solution much more efficient (cf. s. 2.3). 

2.1 Planning as a Searching Process: Blind-Search Strategies 

The most important aspects involved in the solution of a problem within “problem solving” 
are these (Russell and Norvig, 1995, p. 60): 
• State space. The set of all possible states of the environment. 
• Initial state. The state from which the agent starts to solve the problem. 
• Goal and goal test. A goal is a state that is “desirable” for the agent. There might be more 

than one goal. The goals can be explicitly listed or identified by abstract properties. A 
goal test is a procedure directed to verify if a particular state corresponds to a goal. 

• Actions (operators). The actions with which the agent interacts with the environment. The 
term “operator” is used to denote an action in terms of the state that will be reached by 
carrying out the action in a particular state. In problem solving little importance is given 
to the details of execution of the actions, so the stress is put on the next states achievable 
from one particular state. The execution of an operator is often associated with a cost 
(often equal to 1 for all operators). 

• Path and solution. A path is a sequence of actions leading from one state to another state, 
while a solution is a path leading from the initial state to a goal state. 

• Path cost. Sum of the costs of the individual actions along a path. The path cost from the 
initial state to a state s is indicated by g(s). 

• Search and expansion. The process of looking for solutions, and in particular for solutions 
with low cost, is called search. A search is carried out by “expanding” the states that can 
be achieved from a particular state. An expansion is the application of the available 
operators to a state in order to know the states that can be achieved from it. Notice that 
when the search terminates and the execution of the solution takes place, an execution of 
a physical action corresponds to each expansion. 

It is helpful to think of the search process as building up a search tree whose nodes correspond 
to the states of the state space. The root of the tree is the initial state, and the leaf nodes 
correspond either to a goal state or to a state without successors. The search strategy is then 
the algorithm that is used to iteratively expand the search in some nodes of the search tree in 
order to find a solution. 

Search strategies can be divided into two main categories. The uninformed or “blind-
search” strategies explore the branches of the search tree without using any information about 
the nodes to expand. The informed or “heuristic-search” strategies use information about the 
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cost from a state to the goal to selectively expand the nodes. A review of some blind search 
strategies that were relevant for this research is presented in appendix 1 s. 13.1.1 (cf. also 
Korf, 1988). 

2.1.1 Critical Observations 

It is important to stress why problem solving can be viewed as a form of predictive planning 
(also cf. Russell and Norvig, 1995, pp. 338-339). During the searching process the selection 
of the operators employed to build the solutions to the problem is done on the basis of some 
“model of the environment”. An “operator” (as has been defined previously) incorporates part 
of such a model as the state that the agents expect to observe after the operator is executed in 
a particular state. When a solution is found (and considered satisfactory) the agent can execute 
the single operators that make up the solution in the environment. In this way the capacity to 
predict is used to constrain the future course of action. 

Another important aspect of problem solving is that the search strategies presented can be 
used only when the effect of an action (operator) is deterministic, or stochastic with a finite 
number of possible outcomes. In fact only in this case it is possible to explore in a systematic 
way all the possible sequences of actions. This aspect is particularly relevant for this research 
since the controllers designed and implemented here are required to be capable of dealing 
with a stochastic world (cf. s. 1.1.2). As we shall see chapter 8 and 9 address this problem by 
proposing exploration strategies that resemble the iterative-deepening search and the 
bidirectional search, but are adapted to deal with the stochastic outcomes of action execution. 

2.2 Planning as a Searching Process: Heuristic-Search Strategies 

Heuristic-search strategies use information about the cost of the cheapest path from a given 
state to the goal to determine which node to expand. A function that calculates such a cost 
estimate is called a “heuristic function” and can be indicated with h[s], where s is the current 
node. For most problems the cost of reaching the goal from a particular state can be estimated 
but cannot be determined exactly. Heuristic functions are problem specific. Some important 
heuristic-search strategies relevant for this research are reviewed in appendix 1, s. 13.1.2. 

2.2.1 Critical Observations 

The core aspect of heuristic-search strategies is that they exploit some information about the 
estimated “distance” that the states have from the goal. This aspect is particularly relevant 
because it resembles what is done by the reinforcement learning algorithms employed to 
design the neural planners presented later. These algorithms work by assigning “evaluations” 
to states. The states’ evaluations form a gradient field over the states, and reflect the distance 
of them from the goal. As shown in s. 13.2.11, there is a precise correspondence between 
some forms of dynamic programming and some heuristic-search strategies. 

S. 2.1.1 has already shown that search methods can be thought of as a form of planning. 
As planning processes, search methods suffer of a major drawback that stems from the fact 
that they treat states as “black boxes”. When a search strategy selects an action (operator) in a 
given state, it has to consider all the possible available actions, independently of their 
pertinence to the state. This generates a combinatorial explosion after few planning steps (cf. 
s. 13.1.1). Heuristic search methods attempt to face this problem by assigning a cost or value 
to states in order to focus the search. Nevertheless, the combinatorial explosion is still a major 
difficulty for problem solving, even if we consider the sophisticated A*, IDA* and LRTA* 



 

 

 
30 

(cf. cf. s. 13.1.2). A possible solution to this problem is to exploit the advantages deriving 
from “opening up” the representation of states, goals and actions. The effects of this are so 
important that a new branch of artificial intelligence, that of “planning”, has been formed to 
study them. 

2.3 STRIPS Planning: Partial Order Planner 

Within STRIPS planning, a planning problem can still be framed as it has been done in s. 2.1. 
The big innovation of STRIPS planning is a new way of representing the states, goals and 
actions, the “STRIPS representation” (STanford Research Institute Problem Solver; Fikes and 
Nilsson, 1971). The basic idea underlying the STRIPS representation is to “open up” the 
representation of states, goals and actions. The representation of the states is broken into a 
conjunction of logical predicates. Lists of predicates describe the initial state and the goal 
states. The representation of actions is more complex. An example of how an action 
(operator) is represented is shown in Figure 2.1. 
 

 

 

 

 

 

 

 

 

Figure 2.1: An example of action, with preconditions and effects. 

 
In this diagram “Go(there)” is the label of the action. The “Procedure of execution” is a 

specification of the single steps that have to be carried out when the action is executed. An 
action contains some “preconditions”, i.e. a list of predicates that describe the set of states 
where the action is applicable. It also contains some “effects”, i.e. a list of predicates that 
describe the set of states where the action can lead if executed. The effects are divided in two 
parts: a “delete list”, that contains all the precondition predicates that do not hold anymore as 
a consequence of the action execution, and an “add list”, that contains all the predicates that 
describe the consequences of the action execution. 

2.3.1 Situation Space and Plan Space 

It is possible to describe a problem in STRIPS language and solve it by starting with the 
initial state and applying operators one at a time until a state that includes the literals of the 
goal is reached. A blind-search strategy could be used to this purpose. This would be a kind of 
planner called “situation space” planner because it searches through the space of possible 
situations (Russell and Norvig, 1995, p. 345). It would be also called a “progression planner” 
because it searches forward from the initial situation. The main problem with the situation 

Action: Go(there) 

Preconditions: 

At(here) 

Have(energy) 

Effects: Delete list 

¬At(here) 

¬Have(energy) 

Effects: Add list 

At(there) 

Procedure of execution 
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space progression planners is the branching factor which implies a huge size of the search 
space after few steps ahead. 

One way to cut the search space is to search backwards. This search is called “regression” 
planning. This kind of search is possible within a STRIPS representation, because the actions 
contain enough information to regress from some preconditions of one action, to an action 
that has some effects that satisfy that preconditions. Regression planners are more efficient 
than progression planners because usually few actions can be linked to the goals, while many 
actions can be linked to the initial state. Unfortunately searching backward is complicated by 
multiple goals or, as in chess, by the excessive size of the space. In these conditions situation 
space planners are incomplete (they do not always arrive at the solution; Russell and Norvig, 
1995, p. 345). 

An alternative strategy is to search through the space of plans rather than the space of 
situations. This strategy implies to start with a simple incomplete plan (“partial plan”), and 
then to add actions to it until a complete plan is obtained. A set of operators is defined that 
allows passing from one plan to another plan. The operators add an action, impose an ordering 
to the actions of the plan, instantiate a variable, and so on. An important aspect of this strategy 
is that the order with which the actions are found is irrelevant. 

Many planners use the principle of the least commitment, which states that one should 
leave things to be worked out as late as possible. The reason is that if some choices are made 
too early, it is more likely that they will cause a backtracking process later. The principle is 
also applied to the ordering of the steps. The ordering should be made as late as possible. A 
planner that can represent plans in which some steps are not ordered, is called a “partial order 
planner”. The principle of least commitment also applies to variables: they should be 
instantiated as late as possible. Plans in which every variable is instantiated are called “fully 
instantiated plans”. 

2.3.2 Partial Order Planner 

Now one of the first planners based on the principles just mentioned, the Partial Order Planner 
(Sacerdoti, 1977), is described here in general terms. This planner starts with an initial plan 
represented by the start and the goal, and tries to add actions to it. To keep the search focused, 
the planner only considers adding actions that serve to achieve a precondition that has not yet 
been achieved. The planner stores information about the “causal links”. A causal link marks 
the fact that an effect of an action satisfies a precondition of another action. Causal links are 
“protected” in the sense that if an action can break one of them, then it cannot be inserted in 
the plan. The planner also stores information about “ordering constraints” between pairs of 
actions. An ordering constraint between two actions implies that the first action can be 
executed only after the execution of the second action. 

At the beginning the planner selects an action that satisfies some of the preconditions that 
describe the goal. Unlike the search algorithms of s. 2.1, the branching factor is now quite 
limited. Then the planner tries to add other actions to satisfy the unlinked preconditions of the 
actions already inserted in the plans. If an insertion violates a causal link, the planner tries to 
insert an ordering constraint so that the violating action is executed before (demotion) or after 
(promotion) the two actions whose link would be violated. If this is not possible the planner 
backtracks, and other causal links / ordering constraints / new action insertions are tried out. A 
solution is achieved when a complete and consistent plan has been assembled. A plan is 
complete when all the preconditions and effects of actions of the plan are linked. A plan is 
consistent when the causal and ordering links have no contradictions. 
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2.3.3 Critical Observations 

It is important to notice that in STRIPS planning, as in problem solving, the designer 
hardwires the model of the environment into the system by defining the actions. In fact the 
effects a STRIPS action represent the prediction of the effects that the planner should expect 
from the execution of the procedure of the action itself, given the preconditions in 
correspondence to which it is executed. This is an important simplification since the 
acquisition of a reliable model of the environment is a crucial step for the success of planning 
of autonomous agents. 

We have seen that breaking the state representation into logical statements through 
STRIPS representations allows the planners to cut down the branching factor of the search. 
Unfortunately, this strategy implies two operations that are very difficult to implement with 
neural networks: (a) the input patterns from the sensors need to be converted into logical 
statements; (b) the logical statements needs to be processed in sophisticated ways to build the 
plan. 

The first difficulty derives from the fact that we still do not have an efficient neural 
network model that can parse a complex input from the environment (e.g. a visual image) and 
build a logical or equivalent description of the “relevant aspects” of it, e.g. by describing the 
objects present in the image. 

The second difficulty derives from the following considerations. A central aspect of 
STRIPS planners are the reasoning processes. These are based on sophisticated and precise 
mechanisms (action insertion, matching between predicates, backtracking, checks of violation 
of causal links, variable instantiation, etc.). Neural networks can implement any 
computational mechanism that can be implemented with a computer (McCulloch and Pitts 
networks are equivalent to finite automata: Rojas, 1996, p. 43). However the most interesting 
properties of neural networks such as generalisation, fault tolerance, and prototype extraction, 
can be obtained only if neural networks use distributed representations and parallel processing 
(cf. s. 4.4). For these reasons neural networks are not suitable to implement mechanisms that 
operate on local representations as those necessary for the preconditions and effects used in 
STRIPS reasoning. 

Given these difficulties, this research has chosen to refer to a concept of state as a whole, 
and to use neural networks that decompose the input patterns in terms of “features” instead of 
logical propositions. However, the problem of how parsing the state representation to isolate 
“relevant” aspects so as to improve the flexibility and efficiency of intelligent systems, 
remains an important open problem when implementing neural planners. 

2.4 STRIPS Planning: Conditional Planning, Execution Monitoring, 
Abstract Planning 

The Partial Order Planner is based on the assumption that in a first stage a plan can be 
usefully generated and then it can be executed. Many environments of real problems do not 
allow to use this strategy because they have the following features (Russell and Norvig, 1995, 
p. 46): 
• They are inaccessible (or “partially observable”, cf. also s. 13.2.2): the sensors of an 

agent do not detect all the aspects of the environment that are relevant for the selection of 
actions. 

• They are stochastic: the next state of the environment is not completely determined by the 
current state and action (inaccessible environments are always stochastic to the eyes of 
the agent). 
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• They are ill detected and acted upon: the information returned by the sensors and the 
execution of actions through the effectors are affected by noise. 

• They are dynamic: the world continuously changes while the agent is deliberating and 
acting. 

• They are continuous: percepts and commands to effectors are not limited in number, 
distinct, and clearly defined (in which case they would be “discrete”). Rather they are 
encoded with vectors of continuous values. 

When the environment has some of all of these features the results of the execution of actions 
can be different from the expected ones. This implies a serious challenge to planners as the 
partial order planner. Two solutions to this problem have been proposed that imply a 
modification of the partial order planner: conditional planning and execution monitoring. 

2.4.1 Conditional Planning 

Conditional planning (Warren, 1976; Linden, 1991) deals with uncertainty by taking into 
account the possible situations that might arise during the execution of the plan. “Sensing 
actions” are used for this purpose. These actions allow the agent to gather information about 
the current state of the environment, so as to execute the appropriate part of the plan. 

The plans are generated with mechanisms similar to the ones shown for the partial order 
planner. The main difference is that there are “conditional links” that can be created by 
inserting a sensing action to satisfy unsatisfied preconditions. When executed, a sensing 
action returns a “context”, i.e. a statement hold to be true (or, in the more complex case of 
“parameterised plans”, a parameter) and used to match an unsatisfied precondition. The 
context is inherited by the following actions until the last step. 

When a sensing action is inserted, an alternative plan has to be built for the case the 
sensing action returns the alternative context (the negation of the first one). This is done by 
inserting a second finish step that is a copy of the original but differs from it for having this 
alternative context (this is similar to a further goal to satisfy). This second branch of the plan 
is built with the usual mechanisms. Notice that for each sensing action inserted an alternative 
branch of the plan has to be generated. 

2.4.2 Execution Monitoring and Replanning 

Execution monitoring offers another solution to deal with uncertainty. It is based on the idea 
of “re-planning”: the agent formulates a plan, executes it and monitors the consequences of 
the actions, re-formulates and adjusts the plan when the consequences of actions are different 
from the expected ones. An example of this strategy is IPEM, Integrated Planning Execution 
and Monitoring System (Ambros-Ingerson and Steel, 1988). In IPEM planning and execution 
are fully integrated. IPEM has many aspects in common with the partial order planner. At a 
general level, the main differences are the following ones. After the execution of each action 
the agent carries out the following operations: 
• The agent updates the internal representation of the environment. The updating of the 

internal representation of the environment is done on the basis of perceptions. This 
representation makes up the new start state for the agent. 

• The parts of the old plan that are no more applicable are deleted. This is done on the basis 
of the new representation of the environment. 

• The plan is updated through mechanisms similar to the ones showed for the partial order 
planner. 
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Notice that in its pure form, re-planning and execution monitoring are based on a rigid plan, 
so that any slight divergence from it triggers the re-planning process. 

2.4.3 Abstract Planning 

An important chapter of the planning literature is the one on abstract planning (Sacerdoti, 
1974; Russell and Norvig, 1995, pp. 371-385). Abstract planning has been motivated by the 
observation that the number of “primitive operators” (the operators that can be directly 
executed by the agent's effectors) needed to make up a plan to solve many real problems is in 
the order of hundreds or thousands. In these cases the planners reviewed so far cannot find a 
solution in a reasonable amount of time. Abstract planning has proposed to solve this 
difficulty by using “hierarchical decomposition”. This uses the concept of “abstract operator”. 
An abstract operator can be decomposed into a group of steps that forms a plan that 
implements the operator. Eventually the decomposition can lead to have all primitive 
operators. This decomposition can be stored in a library of plans and retrieved when needed. 
To implement this strategy it has been necessary to extend the STRIPS language to allow to 
handle abstract operators, and to modify the planning algorithms to allow for the replacement 
of the abstract operators with their decomposition. 

2.4.4 Critical Observations 

The major drawback of conditional planning is that the number of possible conditions to take 
into considerations grows exponentially with the number of actions, so that for many realistic 
tasks it soon becomes impossible to take into account all possible situations that may arise 
while executing the plan. Execution monitoring has also some drawbacks, as it produces very 
fragile plans that require frequent replanning. Replanning can also be very expensive, for 
example when one gets a puncture and does not have a spare tyre. Having “spare tyres” in 
cars is the result of a conditional planning process rather than of a replanning process (Russell 
and Norvig, 1995, p. 407). 

These considerations suggest that better solutions fall between the extreme cases of full 
conditional planning (or “universal planning”) and full replanning. A desirable solution would 
be a planner that on one side builds up a plan that can deal with the most likely outcomes of 
its execution and on the other side is capable of replanning when the less likely situations are 
encountered. This is what the planners designed and implemented in chapter 8 and 9 do. 

The issue of abstraction is a crucial issue for any planning system. Planning expresses its 
full power in comparison to reactive behaviour when it is applied to long-lasting tasks, and 
when it can operate on the basis of abstract operators. It is not easy to find a way to 
implement the concept of macro-operator with neural networks because it is difficult to find a 
neural correspondent of the process of “abstraction” in general. Chapter 11 starts to explore a 
possible simple solution to this problem. 

2.5 STRIPS Planning: Probabilistic and Reactive Planning 

The previous sections have stressed how important it is that planners are capable of dealing 
with incomplete and erroneous information, and with unexpected stochastic outcomes of 
actions by reacting appropriately to the current situation. This section reviews four planners, 
the BURIDAN planner algorithm, reactive planning (universal plans), decision theoretic 
planning, and Maes' planner, which go in this direction. The BURIDAN planning algorithm is 
interesting because takes into consideration probabilities, and therefore represents a bridge to 
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Markov decision processes analysed in s. 13.2 (cf. also the C-BURIDAN planner, Draper et 
al., 1994; and the MA planner, Ma and Doran, 1993). Reactive planners are interesting 
because they take to the extreme the idea underlying conditional planning, that of considering 
what to do in the case of different possible outcomes of actions. Interestingly, they have been 
shown to be equivalent to Markov decision processes. Decision theoretic planning is relevant 
because it is based on Markov decision processes, but makes use of decision trees, whose 
nodes are the state-variables, to represent transition functions, value functions and policies. 
Decision theoretic planning are based on the idea, inspired by STRIPS-like planning, that 
actions affect few state variables. Finally Maes' Planner is interesting because it presents a 
reactive planner that works on the basis of connectionist-like activation diffusion, and can be 
considered a bridge between the STRIPS planning systems and the connectionist “activation 
diffusion planners” (cf. s. 4.5.1). 

2.5.1 BURIDAN Planning Algorithm 

The BURIDAN planning algorithm (Kushmerick et al., 1994) assumes that the agent has 
incomplete information about the initial state and actions with stochastic (known) effects. The 
algorithm produces a plan that reaches the goal with a probability over a certain threshold, 
starting from a probability distribution over initial states. A state is described as a set of logic 
propositions. The actions are defined in terms of preconditions and effects produced with 
given probabilities. These probabilities depend on the value of the preconditions at the 
moment of execution of the actions. Given a plan, i.e. an action sequence, it is possible to 
compute the probability that it leads to the goal. A plan with a probability of success greater 
than the threshold is built by using mechanisms similar to the ones described for the partial 
order planner (action insertions, causal links, promotion, etc., cf. s. 2.3.2) modified to take 
into consideration the stochastic nature of actions. 

2.5.2 Reactive Planning and Universal Plans 

The idea exploited by reactive planning (Schoppers, 1987; Schoppers, 1989) is to abandon 
altogether any commitment to any particular sequence of actions. At execution time the 
current situation is classified, and the response planned for that kind of situation is performed. 
This can be done because the plan generates conditional advice of the kind: “IF a condition P 
arises AND you are trying to achieve goal G THEN the appropriate response is action A”. 
The class of problems that the agent is capable of facing is specified only by the goal. No 
initial state is needed: the plan allows the agent to achieve the goal from any initial state. The 
plan is hence called a “universal plan”. At planning time, the planner builds a universal plan 
by back-chaining from the goal conditions, using the effect descriptions as goal reduction 
operators. Back-chaining terminates when the satisfaction of the preconditions being 
examined or a contradiction is achieved. 

2.5.3 Decision theoretic planning 

Planning under uncertainty can be modelled through Markov decision processes (see s. 
13.2.1). Planning problems commonly possess “structure” in the transition probabilities, value 
functions and policies in the sense that many states have similar or same transition 
probabilities / values / policy actions. If states are represented with state variables, this means 
that few variables are usually necessary to correctly predict / yield those transition 
probabilities / values / policy actions. Decision theoretic planning (Dearden, 2001; Boutilier et 
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al., 2000) assumes a finite number of states for each state variable (e.g. two values in the case 
of Boolean variables) and uses decision trees to represent states’ transition probabilities / 
values / policy actions. This allows decision theoretic planning to exploit the structure 
mentioned since decision trees can abstract over state-variables. 

To illustrated the key ideas of decision theoretic planning, let us consider the problem of 
representing the transition probabilities in a compact form. When an action is executed, few 
state variables (“children”) might change their values each depending on the values of few 
other variables (“parents” of the child). The dependencies of each state-variable (affected by 
the action) from its parents can be represented by one decision tree. A node of this tree 
represents a parent, the edges of a node represent the values that the parent node can assume, 
and the leaves (assuming Boolean variables) represent the probability that the child variable to 
which the tree refers is true. In this data structure a branch of the tree, from the root to a leave, 
represents a particular set of states where the variables corresponding to the nodes of the 
branch have the particular values corresponding to the edges of the branch, and the variables 
not present in the branch can assume any value. The reward function, the value function and 
the action policy can be represented by three trees of the same type, but whose leaves 
respectively represent the probability of getting the reward, the values, and the actions, again 
associated to the states’ regions represented by the different branches of the tree. The key idea 
of these type of representations is that they are particularly compact (e.g. compared to the 
tabular representations, see s. 13.2.8) since state representations of trees abstract over 
variables. This is made possible by the circumstance for which many states have the same 
transition probabilities / values / policy actions. 

By using these tree data structures, the fundamental algorithm proposed by theoretic 
decision planning allows computing (“regressing”) the tree that represents the expected value 
of performing a particular action a at the various states (the Q values, see s. 13.2.1), given a 
particular evaluation tree (the V values, see s. 13.2.1). To give an idea of how it works, let us 
consider a starting evaluation tree tree(V0) corresponding to the simple reward tree, that says 
which variables are relevant to achieve the reward, and let us assume that we want to compute 
the Q tree tree(Qa

1) corresponding to tree(V0) and the execution of action a (one step 
regression). The idea exploited by the algorithm is that if the transition probability tree and 
the reward tree are available, it is possible to find out the variables which the variables 
important for the reward depend on. This information allows building a tree (called 
“probability tree”) that “factors”, i.e. partitions the state space into regions reached with the 
same probability, under the execution of a, and having the same value indicated by tree(V0). 
Then, on the basis of the probability tree, and taking into account the discount coefficient and 
the reward itself, it is possible to build tree(Qa

1). More in general, given any value tree 
tree(Vk) and the transition probabilities’ tree, the same mechanisms allow building tree(Qa

k). 
Given a value function Vk, these ideas can be exploited to produce a new value function Qπ

k+1 
that represents the value of executing the policy π for one step and receiving terminal values 
based on Vk. In fact for a value tree tree(Vk) and a policy tree tree(π), we can generate 
tree(Vπ

k+1) that is just tree(Qπ
k). This is the key step that can be exploited in successive steps 

of “policy evaluation” (see s. 13.2.4). Steps of policy evaluations and policy improvements, 
that make the policy greedy with respect to the estimated value function, yield a “policy 
iteration” algorithm (see s. 13.2.4) that can be used for planning. Notice that each step of 
policy evaluation generates different tree(Vk) that reflect a factorisation of the state space into 
regions with same values. Hence, the whole algorithm both updates the structure of these trees 
and the values at the leaves. 
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2.5.4 Maes' Planner 

The planner proposed by Maes (1989, 1990, 1991) represents actions with the STRIPS 
template. In addition each action is characterised by an “activation value”, a real number used 
to decide if the action is triggered and executed. Three kinds of connections make up the 
architecture of the system: 
• The signals coming from the sensors are converted into a set of predicates. Each action is 

connected with the sensors, and receives a bottom-up activation from them. This 
activation is proportional to the number of the action's preconditions that match the 
“sensorial” predicates. 

• The system has a set of goals to satisfy expressed in form of predicates. Each action is 
connected with the goal system, and receives a top-down activation from it. This 
activation is proportional to the number of the action's effects that match the goal 
predicates. Eventually the activation from the goal is also proportional to the importance 
given to the goal at the moment, e.g. if the goal is ingest_food and the agent is very 
hungry. In this way the system is capable of dealing both with “cognitive goals”, e.g. 
represented by predicates, and “motivations”, e.g. represented by the intensity of “needs”. 

• Actions are also connected by bidirectional connections between them. The intensity of 
the connections between two actions is proportional to the number of their preconditions 
and effects that match. 

The system works as follows. The sensors and goals send their activation to the actions with 
which they are connected. The activation of each action decays according to a certain rate, 
and is transferred (in a certain percent) to other actions both through the backward and 
forward connections. As a consequence the actions' activation accumulates while time 
elapses. When all the preconditions of an action are satisfied and the action's activation 
overcomes a certain threshold, the action is triggered and executed. 

2.5.5 Critical Observations 

The BURIDAN planning algorithm and other planners that try to incorporate the probabilities 
of different outcomes in their reasoning process have the strength of focussing planning on 
the most likely outcomes of the plan execution. This is an important feature that will be 
incorporated in the planners designed and implemented in chapter 8 and 9. 

“Universal plans” were developed as a general scheme for reactive planning. However 
they turned out to be a rediscovery of the idea the “policy” of the Markov decision processes, 
presented in chapter 3 (Russell and Norvig, 1995, p. 411). Markov decision processes are at 
the core of the planners designed and implemented here. It is very important to mention that 
universal planners have an important drawback (Ginsberg, 1989). This drawback affects any 
kind of planner that is based on “compilation” of reactive plans before action execution 
(“reactive planning”), so it is also relevant for the planners proposed here, based on Dynamic 
Programming and Markov decision processes. The drawback is that given a goal, a universal 
plan has to be capable of deciding what to do in any situation that may arise during the plan 
execution. This implies that the situation→action rules to prepare increase exponentially with 
the size of the problem space. After all the biggest advantage of planning versus reactive 
behaviour is precisely that planning allows to decide what to do when it is actually needed. 
Reactive planning ignores this point. For example even a simple simulated robot as the one 
considered here has 50 binary sensors, so the number of the possible situations that it can 
sense is huge, 250. This causes major difficulties both to generate and to store all the possible 
situation→action conditions: the time and space complexity increase exponentially with the 
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problem space. Three solutions have been proposed to face this problem: (a) function 
approximation (Sutton and Barto, 1998, p. 193; cf. s. 13.2.8); (b) focusing the planning 
activity on the relevant areas of the problem space (Sutton and Barto, 1998, p. 246; cf. s. 3.4); 
(c) replanning when necessary (cf. s. 2.4). These solutions are exploited in the planners 
proposed in chapter 8 and 9. 

Decision theoretic planning represents an important bridge between classic STRIP-like 
planning and planning based on Markov decision processes. It offers an important extension 
of dynamic programming to the cases where states are represented by state-variables 
(“features”). The theoretical analysis behind the algorithms proposed by decision theoretic 
planning gives an important contribution to explaining how different features play different 
roles in the prediction of values, and how this “structure” of the problems might be exploited 
through space abstraction. On the other side, decision theoretic planning implements 
abstraction over features by complex mechanisms that work on the single features so that they 
might not scale well to cases with many features. For example, for each policy evaluation step 
the evaluation tree needs to be modified on the basis of the previous evaluation tree, the 
reward tree and the transition function tree. This means that the data structure storing the 
values needs to be modified. This approach might be inefficient compared to alternative 
algorithms and data structures that work on features in parallel and “weight” the importance 
of features for values’ prediction by only changing parameters. For example in the case of 
neural networks usually only the weights are changed, while the data structure, i.e. the 
network architecture, is not. 

Maes' planner implements planning by spreading the activation backward from the goals 
and forward from the sensors through the network of actions. This activation generates chains 
of actions highly activated that connect the two “extremes” of the current state and the goal. 
These chains are then executed according to the satisfaction of their preconditions and level of 
activation. Maes' planner is interesting because it is quite original and because it is taskable 
(cf. s. 5.1). However, it is important to notice that the principle underlying its functioning is 
very similar to the one used by activation diffusion planning (cf. s. 4.5.1). The fact that Maes' 
planner considers operators instead of states as activation diffusion planning does, is not very 
relevant. In fact it is possible to find close correspondences between the two systems. The 
backward activation has a role similar to the activation diffusion of activation diffusion 
planning, i.e. activating the operators with a decreasing intensity on the basis of their distance 
from the goal. The forward activation causes an accumulation of activation of the operators 
that corresponds to the current state. This is equivalent to the triggering of the operators in 
activation diffusion planning. For these reasons Maes' planner can be considered a sort of 
dynamical implementation of activation diffusion planning (cf. Tyrrell, 1994, for the 
limitations of Maes' planner). 

2.6 Navigation and Motion Planning Through Configuration Spaces 

The planning methods reviewed in this chapter, but also those reviewed in chapter 3 as 
dynamic programming, are based on discrete representations of states. This causes difficulties 
when they are applied to robotic problems as navigation or motion planning. In fact these 
problems imply continuous state variables. Configuration spaces are general mathematical 
tools that can be used to implement planning with states described by continuous state 
variables (Yoshikawa, 1990; Russell Norvig, 1995, pp. 790-808). 

The state of a robot can be described with k real values. Each value indicates the state of 
one of the k degrees of freedom of the robot, for example the (x, y) position of the robot in 
two-dimensional space, or the angles formed by the links of the robot's arm. The k values can 
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be considered as a point in a k-dimensional space C, called the “configuration space” of the 
robot. If O is the set of points in C for which any part of the robot bumps into or “is inside” an 
obstacles, the set difference F = C - O is called “free configuration space”. Assuming an 
initial point s1 and a goal point s2, the robot can safely move between the corresponding points 
in physical space if and only if there is a continuous path between s1 and s2 that lies entirely in 
F.  Planning through configuration spaces implies finding one path that satisfies this condition 
and also some efficiency criterion, such as the shortness of the path. 

A planning method based on configuration spaces is called “cell decomposition”. This 
method is based on the identification of some “cells” within F. The cells are contiguous. 
Planning is implemented as a discrete search problem on these cells. An alternative method is 
called “skeletonization”. This method collapse the configuration space into a one-dimensional 
subset called a “skeleton”. A skeleton is a graph with a finite number of vertices connected by 
links. Both vertices and links lie within F. A “path” is planned by using a (graph) search 
method applied to the skeleton. If the start and/or the goal points do not lie on the skeleton, it 
has to be possible to easily compute short path segments between them and the nearest point 
on the skeleton. 
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3 Markov Decision Processes and Dynamic Programming 

It has been suggested (Sutton and Barto, 1998, p. 66 and p. 89), that Markov decision 
processes (Puterman, 1994) are the best framework with which reinforcement learning 
problems can be presented and investigated, and that dynamic programming (Bertsekas, 1995) 
furnishes sound theoretical foundations to it. Appendix 2, s. 13.2, presents the mathematical 
details of the parts of Markov decision processes, reinforcement learning and dynamic 
programming that are the starting point for the controllers presented here, or are important for 
the issues analysed in the following chapters. This wide appendix is justified by the fact that 
the issues presented in it, though available in some textbooks and articles, are quite specialist, 
so the reader might not be familiar with some of them. The reader that is already familiar with 
the material presented in appendix 2 is invited to consider only the mathematical symbolism 
used in it since this symbolism is used throughout the thesis. 

This chapter will focus on few relatively new aspects of Markov decision processes, 
reinforcement learning and dynamic programming, that are quite central for this research. S. 
3.1 will present the restricted class of Markov decision process considered in this research. S. 
3.2 will presents some critical observations on dynamic programming and its relationship with 
heuristic search. S. 3.3 will present the Dyna architectures, and in particular the Dyna-PI 
architecture, that are the starting point for the controllers studied in the next chapters. Finally 
s. 3.4 will analyse some techniques that allow reinforcement learning controllers to focus 
planning activity on restricted areas of the state space. 

3.1 The Problem Domain Considered Here: Stochastic Path-Finding 
Problems 

The controllers presented in this thesis apply to a restricted class of Markov decision 
problems called “stochastic shortest-path problems” (Barto et al., 1995). Given that this 
research does not put a stress on the optimality of the algorithms proposed, the expression 
“stochastic path-finding problems”, or simply “ path-finding problems”, will be used 
henceforth. What will be required for the algorithms is to yield a “satisfactory” performance. 
As an empirical rule, the performance will be judged as satisfactory if the “length” of the 
solution (path) found is much shorter than the solution found by a random walk, and about 
twice or less the size of the optimal solution in the absence of noise during action execution. 
An approximate measure of the optimal solution can be easily computed knowing the size of 
the simulation scenario, the size of the single moves of the simulated robot, and the start and 
goal states in the scenario. All these elements will be furnished in the second part of the 
thesis. 

In stochastic path-finding problems, the reward is equal to 1 (or, in general, to a fixed 
value) for a unique goal state sg, and equal to 0 for all other states: 

 
 MR[sg] = 1                              MR[s] = 0       ∀ s ≠ sg Eq. 3.1
 

where MR[.] is the reward function. 
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In the typical simulation, the simulated robot aims at finding a policy that takes it from an 
initial state si to the goal state sg with the minimum number of steps. When the simulated 
robot reaches sg it is set again at si and a new trial begins (these are also called “episodic 
tasks”, cf. Sutton and Barto, 1998, p. 60). In some other experiments when the simulated 
robot reaches the goal it is set at a different initial state. It is assumed that xg, the vector of 
signals returned by the simulated robot's sensors at the goal state, is known by the simulated 
robot (e.g. stored in a suitable data structure/memory), while xi, corresponding to the initial 
state, is directly perceived. Notice that when the robot stops acting to re-plan (cf. s. 8.3.2), the 
new start state xi is the current one. 

A second class of stochastic path-finding problems considered in the thesis implies 
multiple goals achieved asynchronously. “Asynchronously” here means that at each moment 
the simulated robot is pursuing only one goal. In the thesis two variants of a multi-goal 
navigation stochastic path-finding problem are considered. In the first variant the simulated 
robot pursues the same goal several times, and is assigned another goal only after several 
successes with the first one. At each success the simulated robot is set at a start state or at 
some other state randomly drawn. In the second variant of the problem, a new goal is assigned 
to the simulated robot after each success. This new goal is randomly drawn from a set of 
goals. In this case there is no need to reset the simulated robot in new state: the state of the 
goal just reached is the starting state from which the simulated robot pursues the new goal. As 
we shall see, these variants of the problem are considered in different part of the thesis to 
investigate different aspects of the controllers. 

Now some aspects of the multi-task problems are formalised because they are particularly 
important to clarify the concept of “taskability” (cf. s. 5.1). At each moment the simulated 
robot pursues the goal state sg

 ∈ Sg
 ⊂ S assigned to it, where Sg is the subset of states used as 

goal. The simulated robot's task is to reach the goal from a start state si
 ∈ S. In the case of 

stochastic policies, finding a solution to the problem requires finding a suitable mapping from 
the current state, goal and the available actions a ∈ A, to the probabilities of such actions (cf. 
s. 13.2.3): 

 
 (S × Sg × A) → [0, 1] Eq. 3.2
 
In the case of deterministic policies, finding the solution of the problem requires finding a 

suitable mapping from the current goal and state to suitable actions: 
 
 (S × Sg ) → A Eq. 3.3
 
It is very important to notice that when the simulated robot pursues only one goal during 

its existence, then the mappings to learn are the ones of Eq. 13.4 or Eq. 13.6. These mappings 
are much simpler than the mappings of Eq. 3.2 and Eq. 3.3 thanks to the fact that they do not 
require considering the information about the goal pursued. In the case of stochastic policies 
the simulated robot has “simply” to assign a proper probability distribution to the actions, and 
to select one action on the basis of this distribution, on the basis of the state. In the case of 
deterministic policies, the simulated robot has to select a proper action on the basis of the 
state. This fact is very important because in some circumstances it renders planning agents 
much more efficient than reactive agents. In fact in order to solve multi-goal tasks reactive 
agents have to learn the complex mapping of the kind S × Sg × A → [0, 1] (or S × Sg → A) 
i.e. a mapping for each possible goal pursued. Instead, planning agents can once and for all 
learn and store knowledge in the model of the environment, that is independent of the 
particular goal pursued. Then they can dynamically build the necessary mapping S × A → [0, 
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1] (or S → A) on the basis of this knowledge. This is the core idea underlying the concept of 
“taskability” (cf. 5.1). Chapter 8 will show how it is possible to modify the basic Dyna-PI 
architecture to make it fully taskable. 

Before closing this subsection, it is important to stress that the one-goal problems 
considered here are more restricted than the ones considered in classic artificial intelligence 
planning. In fact the planners of this literature usually specify the goal as a set of abstract 
properties that the desired state has to satisfy. This implies that the goal is actually a set of 
states. Given the difficulties that current neural-network models encounter in dealing with 
abstract representations of states, this research focuses on the simple case where a goal 
corresponds to a single state (with the tolerance of some noise). 

3.2 Critical Observations on Dynamic Programming and Heuristic Search 

This section presents some critical observation on dynamic programming and its relationship 
with heuristic search analysed in Appendix 2, s. 13.2.9, 13.2.10, and 13.2.11. One of the 
reasons dynamic programming (cf. s. 13.2.9 and 13.2.10) is an important machine learning 
method is that it uses policies instead of plans. This allows agents to deal with noisy 
environments where the effects of the actions are stochastic. In fact, whatever the effects of 
the previous action executed are, the selection of the new action will be optimal with regard to 
the current state, and will not be committed to any previous decision (cf. s. 5.3 for a summary 
of the advantages and disadvantages of plans and policies). 

Trial-based real-time dynamic programming (cf. s. 13.2.11) represents an improvement 
of the idea of policy because it allows the agent to focus the backups on few relevant states, 
and to prepare “partial policies”, i.e. policies that work well only for few states (a random 
action is used for the other states). However it is still not fully satisfactory because for certain 
environments too many state could be reached under the execution of the optimal policy, even 
if these events occur very rarely. For example, in the simulation scenario used in the 
following chapters the effect of one action is a movement toward a destination point, but the 
actual point reached has a Gaussian distribution around the destination point. This means that 
in theory all the possible points of the arena could be reached with one movement, in practice 
this means that the points far from the destination point are never reached during the 
simulations. So why should the system worry about them? The solution to this problem is to 
take these probabilities into consideration in some ways. This is the solution adopted in the 
controllers presented in the next chapters. There the system “simulates” the possible effects of 
action execution, i.e. the states reached given the “noise” of the policy and the noise of the 
effects of action, and prepares a policy only for states that are more likely to be visited during 
the use of the policy itself. Incidentally, notice that the noise of the actions' effects are actually 
not “simulated” by the system when planning because the model of the environment is 
deterministic. However, this is a problem caused by the particular implementation of the 
model presented here, not by the general functioning of the planner. 

The equivalence between trial-based real-time dynamic programming and learning real-
time A* (cf. s.13.2.11) is important because it builds a bridge between the two important 
fields of heuristic search and dynamic programming. Notice that it has been possible to show 
a full equivalence between the two techniques because learning real-time A* learns the 
heuristic with experience (it does not necessarily require a heuristic a-priori as the majority of 
the other heuristic-search methods do, cf. s. 13.1.2). 

Most importantly, the equivalence shows that dynamic programming and heuristic search 
are based on a gradient field of heuristic values or evaluations over the states. In s. 5.2 it will 
be shown that “activation diffusion planning”, a kind of planning mechanism often used in 



 

 

 

neural planners, is itself based on the idea of gradient field over states. This result will be used 
to suggest that the idea of gradient field unifies many approaches relevant for neural-network 
planning. In turn this will be shown to be a positive result for neural-network planning since 
the idea of gradient field can be implemented in a straight forward way with neural networks. 

3.3 Dyna Framework and Dyna-PI Architecture 

Dynamic programming implies to carrying out full backups (cf. s. 13.2.9 and Figure 13.1). 
Dyna architectures (Sutton, 1990; “Dyna” stands for “dynamic programming”) integrate the 
idea of dynamic programming, i.e. computing the state-evaluation function on the basis of a 
model of the environment, and the idea of reinforcement learning methods, i.e. computing the 
state-evaluation function on the basis of sampling backups (cf. s. 13.2.9 and Figure 13.1; 
Sutton and Barto, 1998, p. 243). Sample backups bring faster convergence because they 
explore states in depth rather that in width while updating the evaluations of states. This 
favours quick “propagation” of evaluations from the states with high evaluations/rewards 
towards other states (Sutton and Barto, 1998, p. 245-246). 
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updating of the evaluations and policy are based on simulated experience generated through 
the model of the environment. 

In general the simulated experience is generated as follows (as an example, the case of 
the actor-critic methods is considered, cf. s. 13.2.6). Given a state st, the policy selects an 
action at. This action, together with the state st, is sent to the model of the environment, that 
returns the expected new state st+1 and the reward rt+1 as consequences of that action. The 
states and the selected action can be used to train the evaluation function and the policy in the 
same way it is done with standard reinforcement learning. This means that st and st+1 are used 
by the evaluation function to return V'π[st] and V'π[st+1]. In turn these values, together with the 
“predicted” reward rt+1, are used to compute the error et. Finally this error is used to update 
both the evaluation function and the policy (cf. s. 13.2.4, 13.2.5, and 13.2.6). 

The states as st used to generate “simulated experience” can be generated in different 
ways. For example they can be generated at random from the set of possible states. Or, given 
an initial state, they can be generated by using the states predicted by the model of the 
environment, plus the actions selected by the policy, to predict other states in sequence (cf. 
trajectory sampling, s. 3.4). 

If the evaluation function and policy are trained for some time through simulated 
experience generated by using the model of the environment, they improve their competence 
to evaluate and act in the environment. For this reason this training, together with the use of 
the model of the environment, can be regarded as a form of planning. 

3.3.1 Critical Observations 

Dyna-PI architectures are type of “compiling planners” (cf. Mitchell, 1990) because the 
outcome of planning is not directly used for acting, but is store in the reactive components 
(memory structures) of the system. When the system passes from planning to action 
execution, what it does is simply to act on the basis of the reactive components. The 
alternative is a planning system where the outcome of planning is kept in a temporary 
memory structure, is used to act, and then is eventually incorporated into the reactive 
components to be retrieved at a later time when a similar situation is encountered. 

Compiling planning has the advantage that the outcome of planning is directly stored in 
the “most usable” form, i.e. into reactive components, and is permanently incorporated in the 
skills of the system. This produces the nice property of Dyna-PI architectures for which both 
planning (if based on a good model of the environment) and acting, contribute to improve the 
evaluations and the policy, no matter when they are executed. Compiling planning has also 
the advantage that no extra memory structures are needed to temporarily store the outcome of 
planning. 

Unluckily, compiling planning has also some disadvantages. In particular if the planning 
process generates several possibilities of low quality before arriving to a good policy, and the 
reactive memory structures are used as “working memory”, the contents of the skills could be 
damaged by the planning process. This is particularly important if neural networks are being 
used, because these are prone to suffer of “catastrophic interference”: the temporary storage 
of any noisy/useless information tends to damage the contents of the existing memory (s. 
4.4.1). In this case it would be better to store temporary policies in buffer memory structures, 
and then transfer only some of them to the long-term reactive memory structures at a second 
time, after they have proven their quality in the environment. 
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3.4 Prioritised Sweeping and Trajectory Sampling 

Prioritised Sweeping. We have just seen that any simulated experience generated improves 
the evaluations and policy, if the model of the environment is enough accurate. However the 
methods used to generate such simulated experience greatly influence the convergence speed 
of the process, because it can focus the updating of the evaluations and policy on “relevant” or 
“marginal” regions of the state space. 

Consider problems where states are represented as whole discrete entities, i.e. not by state 
variables or features (cf. s. 13.2.8). In these cases “prioritised sweeping” can be used (Moore 
and Atkenson, 1993; Sutton and Barto, 1998, p. 239) to improve the speed with which the 
evaluation function and the policy are updated. 

Prioritised sweeping is a method based on a relatively simple idea. For example consider 
the popular case of Q-learning (cf. s. 13.2.4 and 13.2.5): if the evaluation of one state-action 
pair changes a lot, then the evaluation of its “predecessors” (the state-action pairs that have 
led to the state at least one time in the past) would change a lot if updated. To exploit this 
idea, the system keeps a queue of the Q values to be updated in decreasing order of “priority”. 
The priority of a state-action pair is defined on the basis of the amount of change that its Q 
value would undergo if updated, and on the basis of the transition probability from this state-
action pair to the successor. At each cycle the state-action pair with the highest priority in the 
queue is updated. Then the priority of its predecessors is computed, and the state-action pairs 
with priority over a certain threshold are inserted in the queue. At each cycle a given number 
of these updates (and predecessors' insertion in the queue) is carried out. 

Although the original formulation of prioritised sweeping assumed whole states, further 
research has proposed alternative formulations capable of working with state variables 
(Wiering et al., 1998; Dearden, 2001). These alternative formulations keep trace of the 
dependencies between the single state variables. On the basis of these dependencies, 
prioritised sweeping is applied to the “predecessor” variables closely linked to those variables 
whose value is significantly updated. 

 
Trajectory Sampling. Another interesting way to focus search on relevant regions of the 
problem space is “trajectory sampling” (Barto et al., 1995; Sutton and Barto, 1998, p. 247). In 
stochastic path-finding problems this sampling implies that planning starts from an initial 
state, for example the current state, and generates a simulated sequence of states through the 
current policy and model of the environment, until the goal state is reached. At the same time 
it updates the evaluations and policy for the states encountered along the way. Sutton and 
Barto (1998, pp. 247) report about a simple abstract problem used to compare trajectory 
sampling with a “full sweeping” process, i.e. a systematic repeated updating of the 
evaluations of all states. The experiment used undiscounted episodic tasks generated 
randomly as follows. For each of the |S| states, two action were possible, each of which 
resulted in one of b next states, all equally likely, with a different random selection of b states 
for each state action pair. On all the transitions there was a 0.1 probability that the episode 
ended. The expected reward on each transition was chosen randomly in a Gaussian 
distribution with mean 0. The performance was measured in terms of the evaluation of the 
initial state. The results of the experiment have shown that trajectory sampling has an 
advantage and a disadvantage versus a “full sweeping” process in terms of speed of learning. 
The advantage is that it ignores uninteresting parts of the space. The disadvantage is that 
when the evaluations and policy become accurate, the same old parts of the space are backed 
up over and over without improvement of evaluations and policy. 
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The idea of trajectory sampling is very important because it is exploited in the planning 
controllers designed and implemented in the following chapters. However, it should be 
noticed that its formulation, as presented in Sutton and Barto (1998, pp. 247), is incomplete if 
used for path-finding problems. For example, it does not deal properly with the danger of 
getting stuck in dead-ends, or with the problem of deciding when to plan and when to act. 
Chapter 8 and 9 will propose and implement some solutions to solve these problems. 

3.4.1 Critical Observations 

The strength of prioritised sweeping is largely caused by the fact that it executes backups 
backward from the states with high rewards associated towards other states. For example in 
the case of stochastic path-finding problems it executes backups backward from the goal state. 
In fact the predecessors of the states from which a high reward has been obtained receive a 
high priority, so they are likely to be updated. Chapter 9 proposes and implements a planning 
controller (neural bidirectional planner) that exploits an alternative idea: the backward 
“propagation” of evaluations. It process works by generating sequences of states backward 
from the goal and forward from the current state. 

The strength of trajectory sampling derives from the fact that it focuses the search on the 
states that the policy visits with a high probability. This seems a powerful idea that can be 
implemented in a relatively easy way. The planners proposed and implemented in this thesis 
are all based on this idea. The forward planner implemented in chapter 8 generates trajectories 
of states starting from the start, so it focuses the search around it. The bidirectional planner 
implemented in chapter 9 generates trajectories both from the goal and from the star, so it 
focuses the search around them. 
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4 Neural-Networks 

In this chapter the neural networks and algorithms used as “building blocks” to design the 
planners presented in the following chapters are introduced. These are the classic “feed-
forward networks”, trained with the “backpropagation algorithm”, and the “mixture of experts 
networks”, trained with an algorithm specifically designed for it. 

4.1 What is a Neural Network? 

What is an (artificial) neural network? It is difficult to give a precise definition, since a great 
number of models have been proposed in the literature (cf. Haykin, 1999, for a wide review). 
However, it is possible to identify some defining traits and some desirable traits of neural 
networks that are particularly significant for this research. The defining traits are the 
following ones: 
• Architecture. The architecture of a neural network consists of a set of units linked with 

connections. The units use the connections to exchange quantitative signals in a parallel 
fashion. 

• Processing. Each unit of a neural network is a simple device: it takes the signals from 
some connected units, processes these signals in a simple way, and as a result sends a 
signal to other units. 

The desirable traits are the following ones. 
• Local learning. The network can “learn”, i.e. some units change their processing 

properties in time. If learning is present, it takes place on the basis of information 
available locally to the unit. For example the “weights” of the connections of a unit are 
updated only on the basis of the activation of the units directly connected with it. Local 
learning is desirable since it does not require complicated architectures to carry learning 
signals to the target units. 

• Distributed representations. Information is represented in a distributed fashion on many 
units and weights. This rules out the possibility of having “local representations” where 
one weight or the activation of one unit represents a whole significant chunk of 
information. A consequence is that the system cannot work as a “finite automaton” (cf. 
Rojas, 1996, p. 43) processing information in a logical way. An example of this would be: 
“If unit x is active it means that the environment state is s, if unit y is active it means that 
the system is pursuing goal sg. If unit x and y are active then unit z is activated, and this 
means that action a is selected”. Distributed representation of information is desirable 
since is allows having the generalisation property of neural networks (see below). 

• Noise. Each component of the system is capable of tolerating some amount of noise 
(“fault tolerance”). This property usually relies on the fact that the system uses distributed 
representations. Noise can even be an important ingredient of the architecture and 
functioning of the system. This property is desirable since it implies that the disruption of 
some components of the system is accompanied by a gradual degradation of performance 
(“graceful degradation”, Rolls and Treves, 1998, p. 30). 



 

 

 
48 

• Local learning, distributed representations and noise tolerance are also desirable because 
they increase the biological plausibility of neural networks. 

4.1.1 Critical Observations 

The design of the controllers presented in the next chapters has attempted to build neural 
networks that posses all the traits illustrated in the previous sections. This has not always been 
possible, in particular for two aspects of the controllers. 

The first aspect concerns the learning algorithms used. Given the computational needs 
met in designing the controllers, it has been necessary to use learning algorithms that violate 
the third requirement and do not have a local nature. For example, this is the case of the 
learning algorithms used to train the mixture of experts networks (Jacobs et al., 1991; cf. s. 
13.3.2) used in chapter 7 and 10, or the use of the backpropagation algorithm (Rumelhart et 
al., 1986; cf. s.13.3.1) in chapter 7: these are not local learning algorithms. The adoption of 
these algorithms has been necessary because local learning algorithms currently known have a 
limited computational power (cf. Rolls and Treves, 1998, p. 23-94). 

The second aspect has been the control of the flow of information among the different 
parts of the system. With some effort it has been possible to transform this algorithm into a 
neural network that possessed the first two traits (this has been done for a simplified version 
of the algorithm illustrated in Figure 8.3). This has not been a surprise since a constrained 
class of neural networks, the networks of McCulloch and Pitts, are equivalent to a “finite 
automaton”, i.e. they can be used to execute any kind of computation that can be executed by 
a computer (Rojas, 1996, p. 44). The problem has been that the outcome of these efforts was a 
neural architecture that did not posses the fourth and fifth traits, the use of distributed 
representations and noise tolerance. As a consequence, the decision has been taken not to 
transform the algorithms controlling the flow of information between the different neural 
components into a neural network, but to leave them in the form of code. 

This experience shows that there are some aspects of planning that require some precise 
control mechanisms that resist an implementation with neural networks that satisfy the 
“desirable traits” listed previously. Some examples of these aspects are these: “switching” 
between acting and planning, controlling the flow of information between neural modules, 
and switching different neural modules on and off. It remains an open question if there are 
other forms of planning that do not require these precise control mechanisms, or if they are 
necessary with any kind of planning. In the later case, the use of logical finite-automaton like 
neural modules would be unavoidable. 

4.2 Critical Observations: Feed-Forward Networks and Mixture of 
Experts Networks 

Feed-Forward Networks and Backpropagation. Feed-forward networks and the 
backpropagation algorithm usually used to train them are illustrated in appendix 2, s. 13.3.1. 
As mentioned, these neural networks, and the ones reviewed in s. 13.3.2, have been used as 
building blocks for the neural planners designed and implemented in the next chapters. One 
reason for which this has been done is that these neural networks have been extensively 
studied, so their properties are quite well known. This made it easier to design more complex 
controllers, as neural planners, on the basis of them. It also made it easier to understand the 
overall behaviour of these complex controllers. Another reason for which those neural 
networks have been chosen as building blocks, is that quite effective learning algorithms have 



 

 

 

been proposed for them. As a consequence, if a system is built on the basis of them, its 
learning capabilities can be quite effective. 

A fundamental quality of these neural networks is that they have a feed-forward 
activation. This means that the signals coming from the input propagate towards and 
generates the output in a direct fashion. In the introduction it has been mentioned that 
predictive planning is likely to require “looping” neural systems, i.e. neural systems where the 
output of some component networks is fed back into the system itself. This feedback is 
necessary because predictive planning requires that the prediction of the effects of actions' 
execution, produced by some networks, be used to change the way the system acts in some 
circumstances, and this “way” is itself “expressed” by other component networks of the 
system. As we shall see, in the planning architectures designed and implemented here, these 
looping processes are implemented with feed-forward networks that feedback their output into 
the input of other feed-forward networks. In particular the basic architecture used in this 
research to implement planning is showed in Figure 4.1. 
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neural architecture used to implement planning. The single 
ral networks are feed-forward networks. 
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The backpropagation algorithm is a supervised learning algorithm. This implies that to 
function it needs a “teaching output” that has to be furnished by an external “teacher”. This 
would seem to limit the applicability of this algorithm to reinforcement learning systems 
because these do not have a teaching output signal to use for training. However in chapter 7 
we will see that in the case of the actor-critic reinforcement learning it is possible to employ 
the backpropagation algorithm for the evaluator. In fact, in the case of the evaluator it is 
possible to build an error signal of the kind shown in Eq. 13.21 (analogously it would be 
possible to use a formula of the kind shown in Eq. 13.17 to implement Q-learning). It is also 
possible to use the backpropagation algorithm for the actor. In fact it is possible to use 1 and 0 
as teaching signals to respectively increase or decrease the merit (cf. s. 13.2.6), and hence the 
probability, of the action that has been selected. The merits of the other actions are left as they 
are as no information about how to change them is available. It is important to notice that, at 
the level of the actor, previous research (cf. Lin, 1992) has shown that when a localist 
representation of the actions is used (one unit for one action merit or Q value), it is better to 
use a different neural network (e.g. a three layer feed-forward neural network) for each unit. 
In fact this avoids interference problems and speeds up the learning process. Notice that the 
localist representation of actions has been used throughout this research and is also used in the 
majority of reinforcement learning studies. 

 
Mixture of Experts Networks. As we shall see in chapter 7, one of the strengths of this 
architecture is its capacity to avoid interference problems in the case of multi-goal tasks. This 
architecture has this capacity because it uses different neural modules to deal with different 
regions of the input-output space. This implies that when the weights of one module are 
updated, the weights of other modules are not disrupted. 

In the previous section we have see that, in general, it is possible to use a supervised 
learning algorithm, such as error backpropagation, both in the case of the evaluator and the 
actor. Unfortunately, while it is possible to use a mixture of experts network for the evaluator, 
it is not possible to use it for the actor. In fact the algorithm used to train this architecture 
needs the error signal of all the output units (cf. Eq. 13.50). In the case of the actor, this error 
signal is available only for the action selected, so the learning rules of Eq. 13.51 cannot be 
applied. As a consequence in chapter 7 and 10 the mixture of experts architecture is used only 
to implement the evaluator, while a new hierarchical modular architecture is used to 
implement the actor. 

4.3 Neural Networks for Prediction Learning 

This subsection reviews some works that have used neural networks as “predictors”, i.e. as 
models of the environment. Nolfi and Tani (1999) present a work where a simulated robot 
follows the wall of a room (stereotyped behaviour) and has to learn to anticipate the future 
input patterns (vision of the wall). The neural architecture they use to this purpose is based on 
a hierarchy of three-layer feed-forward networks that learn through the backpropagation 
algorithm. The network of the lower level takes the current input pattern as input, and learns 
to produce the following input pattern as output. The activation of the hidden units is sent to a 
Kohonen network (Kohonen, 1982) capable of classifying the input into broad categories. The 
classification made by the Kohonen network is sent into a second level network that learns to 
predict how this categorisation changes. The authors show empirically that the second level 
network is capable of predicting some regularities in the input flow (for example which room 
is entered), that are abstract in terms of time and details, and that the first level network is not 
capable of predicting. 
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Sequences learning problems are also tackled by Schmidhuber (1992). The neural 
networks he proposes are based on this principle. A network is used to predict its next input 
on the basis of the previous ones. Since only unpredictable inputs carry new information, a 
second network, working on a slower and self-adjusting time scale, takes as input the inputs 
that are unexpected by the first network. The performance of this system is superior to the 
performance of other systems. 

Duckett and Nehmzow (1999) present some experiments where a robot builds a graph-
based map. A neural network is used to predict the probability of existence of open spaces 
(not yet in the map) in a given direction from a position occupied by the robot. Lee et al. 
(1998) present a work where neural networks are used to build a model of the activation of the 
sensors of a robot in an office, on the basis of the x, y co-ordinates of the position occupied. 

4.3.1 Critical Observations 

The works just reviewed are quite relevant for the work presented here. This may appear 
strange because in some cases they focus on the prediction of the behaviour of aspects of the 
environment independent of the agent's actions, or in other cases they focus on the prediction 
of the consequences of a stereotyped behaviour of the agent. In the later cases the agent 
always chooses the same action in correspondence to each state, so these cases are equivalent 
to the former ones. 

Nevertheless, the models reviewed are relevant for prediction within reinforcement 
learning. In fact, as we shall see in chapter 8, reinforcement learning systems usually use a 
small number of primitive-actions. This makes it possible to build a prediction model for each 
action. In this case the single prediction model (neural network) is trained and used to predict 
the consequences of one action only. This creates a situation equivalent to the situations 
considered in the literature just reviewed where the agent is predicting the consequences of a 
stereotyped behaviour. 

4.4 Properties of Neural Networks and Planning 

What are the characteristics of neural networks that may produce interesting results when they 
are used for planning? Among the most appealing properties of neural networks there are the 
following ones: generalisation (and noise tolerance, that is closely related with it), prototype 
extraction, learning, parallel processing. Now these properties are considered in detail and 
their relevance for planning explained. Notice that the discussion that follows focuses on the 
particular kind of neural networks used here, presented in appendix 3, s. 13.3.1 and 13.3.2. 
These are feed-forward hetero-associative networks. Feed-forward hetero-associative 
networks are networks where the signal flow travels in one direction from the input to the 
output units, and that are capable of learning to associate an output pattern to an input pattern 
(Rumelhart and McClelland, 1986). 

4.4.1 Generalisation, Noise Tolerance, and Catastrophic Interference 

Neural networks' generalisation property is relevant for this research for a number of reasons. 
The introduction set the constraint that the controllers designed here should be capable of 
guiding a simulated robot interacting with a noisy environment. The interaction with the 
environment through sensors and effectors can cause a combinatorial explosion of possible 
sensory and motor configurations that cannot be dealt with one by one. Neural networks are 
capable of dealing with this problem because, thanks to their generalisation capacity, they 
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discover “common structure” between different sets of input output associations, so that they 
can compress information into the distributed representations based on the weights (cf. s. 
13.3.3). 

The problem of noise is correlated with the previous problems. The sensorial apparatus of 
robots returns patterns that are affected by noise. The generalisation property allows neural 
networks to deal with this problem because they can be trained with several input patterns and 
still be capable or responding appropriately to versions of them corrupted by noise. 

Unluckily, generalisation has also some costs. “Interference” is an important one. 
Interference is caused by the same mechanism that underlies generalisation: the updating of 
weights executed to learn an input-output association influences other input-output 
associations. If the first association is dissimilar/not correlated with the second ones, this may 
result in a negative effect in terms of error (Hinton et al., 1986). Interference is particularly 
impairing when different sets of input-output associations are learned at different times, i.e. 
the learning of the input-output associations of the sets are not interleaved. In fact, each time a 
set is used to train a neural network for several times in a row, the information previously 
accumulated for the other sets is disrupted (cf. Sharkey and Sharkey, 1995; Blanzieri and 
Katenkamp, 1996). 

A consequence of this is that when neural networks are used to control autonomous 
robots, interference is particularly impairing. In fact different sets of input-output associations 
generated by the interaction of the robots with the environment tend to be clustered in 
different periods of time. This point is even more important if planning is implemented in a 
way similar to what has been done in the following chapters. In this case, planning implies 
that the controller focuses on the same goal for a long period of time before passing to another 
goal (cf. s. 10.1). This focussing implies that a particular set of input-output associations is 
learned several times before passing to another set. 

4.4.2 Prototype Extraction 

There is a property of neural networks closely related to the generalisation property and noise 
tolerance: the capacity to generate prototype representations of the input patterns. Suppose 
that a three-layer feed-forward neural network with sigmoidal units is trained with noisy 
versions of some input-output pairs. If the original input pattern of some of the pairs is 
presented to the network, the network will tend to return the original output pattern of the 
pairs (without noise), even if it has never experienced them. The network has extracted the 
“prototype” of the input-output associations and tends to suppress the noise. This property 
mainly relies on the non-linearity of the neural network (cf. McClelland et al., 1986). 

As we shall see in s. 8.4.3, this property is particularly important for the kind of neural 
planners implemented here. In fact these planners generate simulated “mental walks”, i.e. 
possible future sequences of states of the environment that the controller expects to observe 
by following a particular course of action. As we have seen in s. 4.2 this generation of 
sequences of states is implemented by using a neural network (predictor) whose output is 
repeatedly fed back into its own input layer (together with the “programmed” action). Given 
the numeric representations used by neural networks, there is the danger that noise 
accumulates during this looping, so that the output becomes a meaningless noisy pattern not 
corresponding to any state of the environment. We shall see that, thanks to the prototype 
extraction property of neural networks, this danger is kept under control, and the coherence 
between the patterns generated and real states tends to be preserved. In fact the patterns 
generated tend to be prototypes (without noise) of the real states, i.e. the patterns that 
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correspond to real states tend to be “points of attractions” for the sequences of predicted states 
generated. 

4.4.3 Learning 

One of the most appealing properties of neural networks is their capacity to learn. These 
means that initially neural networks associate random output patterns to input patterns, if their 
weights are drawn randomly as it is usually done, but with suitable training (cf. s. 13.3.1 and 
13.3.2) they can learn to associate appropriate patterns with them. 

Notice that learning is not necessary for planning. A neural planning system, with fixed 
architecture and weights, could plan solely on the basis of the activation of its units. However, 
in this case the designer would encounter the problem of how to find the weights of the neural 
system. Learning, like other evolutionary/adaptive strategies, is a way to solve this problem. 
In fact it is based on algorithms that automatically find the weights suitable for the problems. 

Learning has positive and negative implications for planning. One positive implication, 
connected with the point just mentioned, concerns the degree of autonomy (i.e. absence of 
human intervention) that can be achieved with neural planners. By definition predictive 
planning relies on information about the consequences that actions have on the environment, 
incorporated in the “model of the environment”. In classic artificial intelligence the designer 
usually hardwires such information in the system (cf. s. 2.1.1 and 2.3.3). The capacity of 
learning makes it possible to design neural planners that build up their own model of the 
environment autonomously through experience (cf. s. 4.5 for some examples of this). 

One negative implication concerns the time required by learning. The majority of the 
algorithms employed to train neural networks require that the neural network experience each 
input-output association several times (Haykin, 1999, for a review). Each time the network's 
performance improves of a small amount until it reaches a desired level. One remarkable 
feature of planning is its flexibility and its “one shot” nature. For example, if we want to move 
an object away from us, we can think one time about the consequences of pushing or pulling 
the object, store in “one-shot” the output of this processing in some form of memory, and 
select the proper action accordingly. This is not easy to implement with neural networks. In 
fact few algorithms developed so far to train neural networks implement one shot learning 
(these are usually based on some kind of Hebb rule, cf. Hebb, 1949, and Hopfield, 1982). The 
problem is that the learning capacities of one-shot learning algorithms are usually limited and 
imply the loss of the useful properties of generalisation, information compression, prototype 
extraction, and noise reduction (Rolls and Treves, 1998, p. 33). Given that these properties are 
very important, in this research it has been decided to use incremental learning algorithms as 
error backpropagation (cf. s. 13.3.1). As we shall see the negative consequence of this will be 
that the planners have to “think” about the same situations over and over in order for the 
knowledge about what to do in different circumstances to be stored suitably. 

4.5 Planning with Neural Networks 

In this section, some neural planners that are representative of all existing neural network 
planning controllers are reviewed. The objective is to highlight the principles that have been 
used so far to this purpose. Neural planning controllers can be grouped under three categories. 
The first category includes planning controllers based on dynamic programming and Dyna 
architectures, reviewed in s. 13.2.9 and 3.3, so they are not considered in this section. The 
second category includes planning controllers based on the principle of “activation diffusion”. 
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The third category includes planning controllers that use a gradient descent algorithm to 
compute the proper sequence of actions or subgoals that make up the plan. 

4.5.1 Activation Diffusion Planning 

Activation diffusion planning (Lei, 1990; Hampson, 1998) is one of the most popular 
techniques used to implement neural planning controllers. Methods based on it have often 
been used to build and use neural “cognitive models” for spatial navigation (Mataric, 1991; 
Levenick, 1991; Kortenkamp and Chown, 1992; Ravel et al., 1998; Trullier and Meyer, 1998) 
but also to implement neural motion planning for plant and robot control (Fomin et al., 1996; 
Zeller et al., 1997; Fleuret and Brunet, 2000). It is a planning method that can be “easily” 
implemented with neural networks. The method has interesting relations with dynamic 
programming and heuristic search, as we shall see in s. 5.2. 

 
 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2: The architecture and environment of an agent capable of 
planning. The bold arrows represent the main flows of information.
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position. For example the model of the environment and these connections could consist of a 
Kohonen neural network (Kohonen, 1982). This network builds the prototypes by learning 
and activates one unit of the model at a time through a “winner-takes-all” competition. 

In an initial phase the agent wanders randomly in the environment and builds up some 
links between the model's units by experiencing which transitions between these units 
(positions in the environment) are possible and which are impossible. Successively, when the 
controller is planning to go to a particular position in the environment, it activates the model's 
unit that corresponds to it with activation r. At this point the activation diffuses from the goal 
unit to the neighbouring units, decreasing in intensity when passing through the links. At each 
time step the activation can diffuse from one unit to its neighbouring units one link distant, 
and decrease when passing through each link. The activation level of each model's unit 
becomes γt r, where t is the minimum number of links from that unit to the goal unit. When 
the activation diffuses from the goal to the other units, if a unit receives activation from more 
than one neighbouring unit, it assumes the maximum activation possible. 

When the activation reaches the unit corresponding to the current position, the “plan” is 
executed: at each time step the agent moves to the neighbouring state corresponding to the 
model unit with the greatest activation. This can be implemented in several ways, for example 
by using a look-ahead exploration of neighbouring units to find the one with the highest 
activation and an “actor” as the one shown in Figure 4.2 (cf. the literature cited at the 
beginning of this section). The “actor” is a servomechanism that takes the features of the 
current position and the features of neighbouring position with the highest activation as input, 
and returns the proper action. Notice that if this component is a neural network, it can be 
trained in the initial phase together with the model of the environment. 

 
Critical Observations. Activation diffusion planning has interesting relations with dynamic 
programming and with heuristic search. We have seen that the units’ activation that it 
generates is γt r. Notice that these values are also the optimal evaluations that are generated by 
discounted dynamic programming after it converges when it is applied to a deterministic 
environment (cf. s. 13.2.9). Notice also that when applied to deterministic environments, 
dynamic programming, as activation diffusion, does not need to iterate, but it generates the 
correct states' evaluations “one-shot” starting from the goal and moving away towards the 
states more distant from the goal. In these respects there is a precise equivalence between the 
two techniques. 

Activation diffusion planning is very interesting for its simplicity and the speed with 
which it generates plans. However it has a major drawback: each state needs to be represented 
with a unit. If fact if each state were represented by many units through a distributed 
representation (cf. s. 4.1) the activation diffusing to the units of one state would influence the 
activation of other states that share the same units. This implies that the space complexity is 
proportional to the number of states of the environment to be stored. This problem is less 
impairing if, as in the example, neural networks are used to compress several states into few 
“prototypes”. However this is still not satisfying. In fact the number of units needed still 
grows proportionally to the number of states since one unit can still represent only one 
prototype. The planners designed and implemented in the next chapters use distributed 
representations for the states of the environment. When distributed representations are used, 
patterns can be stored much more efficiently (cf. Rolls and Treves, 1998, p. 41). The 
drawback of this approach is that a lot of iterations are needed to updated the evaluations for 
each state, as the evaluations of different states depend on the same features, and hence tend 
to have reciprocal influence (cf. s. 13.3.3). 



 

Notwithstanding its drawbacks, activation diffusion planning is a very interesting 
framework. For example the one-shot nature of the activation diffusion process that 
formulates a plan, and the format of the model of the environment in terms of explicit links 
between “contiguous” states (model's units) that can be visited by selecting suitable actions, 
are very appealing properties. Interesting insights can be achieved by comparing activation 
diffusion planning and dynamic programming, and by attempting to design planners that 
incorporate features and strengths of both. Chapter 9 implements a planner that diffuses the 
evaluations from the goal much like activation diffusion planning diffuses activation from the 
goal. 

4.5.2 Neural Planners Based on Gradient Descent Methods 

This subsection briefly reviews some neural planners that use gradient descent methods for 
finding the action plan or subgoals. The first neural planner (Tani, 1996) has been used to 
control a robot that solves a navigation problem by planning. The robot moves at a constant 
speed, and is endowed with an hardwired navigation system that allows it to move toward the 
biggest open space between the obstacles. The robot has to plan a sequence of binary ({0, 1} 
i.e. “left” or “right”) actions to reach the goal, where an action is the decision of which open 
space to choose when a “branching point” is met. A branching point is a point where two 
open spaces are visible. The system is based on a model of the environment implemented by a 
feed-forward neural network trained with a back-propagation algorithm in a preliminary 
learning phase. This network takes the current state and the programmed action as input, and 
returns the predicted future state as output. The plan is built by a gradient descent method that 
minimises a cost function with respect to the actions. To this purpose the binary actions at 
each step of the plan are considered as the extremes of a [0, 1] segment. This cost function 
depends on the mismatch between the predicted state and the goal state, the length of the path, 
and the distance of the actions from their required {0, 1} values. A function based on chaos 
theory is employed to overcome the problem of escaping the several local minima of the 
rugged cost function. 
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Figure 4.3: The architecture of Schmidhuber and Wahnsiedler's planner. 

 
The architecture of a second neural planner (Schmidhuber and Wahnsiedler, 1992) is 

own in Figure 4.3. This system has been tested with a simulated path-finding problem 
ere the cost of the path is differentiable with respect to the states, and each state is encoded 
th (x, y) co-ordinates. In particular it is a navigation task where traversing some swamps in 
 way to the goal has costs depending on the swamps' depth and the positions (x, y) 

cupied by the agent. 
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The system is made up of three components: an actor that is capable of reaching a close 
subgoal from a given state (it could be trained or hardwired feed-forward network); an 
evaluator that is capable of estimating the cost of going from one state to another state in a 
straight path (it could be a trained or a hardwired feed-forward network); and a subgoal 
generator that is capable of generating the next subgoal (e.g. the next x, y to reach, on the 
basis of a start state and the goal state). The subgoal generator is the focus of the work. It is 
trained with a gradient descent algorithm so that it generates a sequence of subgoals such that 
the sum of the costs of the whole path is minimised. 
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5 Unifying Concepts 

This section unifies and generalises some concepts explored in the previous chapters. In 
particular s. 5.1 investigates the relationship between learning, planning, prediction and 
taskability, s. 5.2 investigates the relationship between some of the most important methods of 
heuristic search, dynamic programming and activation diffusion planning, and finally s. 5.3 
compares the concept of plan and policy. 

5.1 Learning, Planning, Prediction and Taskability 

This section generalises some concepts encountered in the previous chapters. In particular it 
offers a formal presentation of “learning of behaviour” and “planning” for asynchronous 
multi-goal tasks (cf. s. 3.1). This serves two purposes: 
• To give a precise definition of the notions of “ learning of behaviour “ (s. 5.1.1) and 

“taskable planning” (s. 5.1.2). The later is a form of planning more restricted than the one 
defined in s. 1.1. 

• To show (s. 5.1.4) that the original Dyna-PI architecture is a planner not taskable “in a 
strong sense”. 

The first point is important because the controllers designed and implemented in the following 
chapters are capable both of planning and learning, so a clear definition of these concepts will 
help to investigate their properties. 

The second point is important because, even if the concept of taskability is clear and 
“natural” within the problem solving and planning frameworks, it is much more subtle and 
easily confusable within Markov decision processes and systems that are both capable of 
learning and planning such as Dyna architectures. Within this literature (e.g. cf. Sutton and 
Barto, 1998, pp. 56-57; Sutton, 1990) the use of the reward is said to be always more general 
than the use of an “explicit” goal, i.e. a goal defined as a state to achieve. This section and 
chapter 8 show that this is not the case. 

The importance given to the problem of taskability by this research is justified by the 
choice of reinforcement learning as a framework to implement planning with neural networks. 

Before continuing, it is important to notice that the definition of goals through rewards 
yields advantages in tasks with multiple synchronous goals. These are tasks where the 
controller has to pursue several goals at the same time. In these cases the controller needs to 
“weight” goals on the basis of their importance to decide how to distribute its efforts and time 
between them. These problems are not dealt with within this research. For an extended 
explanation of these problems and a review of some of the algorithms proposed to solve these 
tasks see Tyrrell (1993), Humphrys (1996) and Hampson (1998). 

In the following sections learning and planning algorithms are left unspecified to include 
most of the algorithms considered in this thesis. Moreover, for simplicity: 
• It is assumed that the environment is deterministic. 
• It is assumed that the “goal” pursued is defined in terms of one particular state. 
• It is assumed that the Markov property holds. 



 

 

 

• In the case of planning, the analysis considers only the case of policies (and not the case 
of plans, cf. s. 5.3). 

• In the case of learning, the analysis considers only the simple case of reward 1 associated 
with goal states, and reward 0 associated with all other states. 
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The interaction with the environment is as follows: 
• At each time step the environment sends (m, s, r) to the controller. 
• At each time step the controller executes an action a in the environment. 
The controller's task is to find a suitable behaviour in order to maximise a given function of 
the rewards obtained over time (e.g. the sum of them, the discounted sum, etc.). To 
accomplish this task the controller follows this procedure (learning of behaviour): 
• At the beginning the controller creates the behaviour at random. 
• At each time step the controller selects a behavioural rule (m, s, a) from the current 

behaviour on the basis of the input (m, s), and executes the corresponding action a in the 
environment. 

• At each time step the controller evaluates the “quality” of the behaviour in terms of the 
rewards r obtained and modifies its behavioural rules accordingly. 

5.1.2 Taskable Planning 

Planning is the process that allows a controller to find “good” associations of the kind “state 
→ action” according to a “goal test” (see below) and eventually other tests (e.g. test about 
costs). The task is divided in finite periods of time (trials). At each time step the input to the 
controller is as follows: 
• The current state of the environment s ∈ S. 
• The goal state sg ∈ S that represents a state that the controller has to achieve before the 

trial ends. A trial ends either when the controller achieves the goal, or when some time 
elapses. 

The controller is made up of the following components: 
• A fixed set of “behavioural rules” b' = (s, a) ∈ B' = S × A. 
• A fixed set of “predictions” p ∈ P, each associated to a particular b'. A prediction is a 

fixed couple of the kind (b', s'), that says which is the state s' that is reached if the action a 
of the rule b' is executed in the state s of the same rule. P is the controller's “model of the 
environment”. 

• A “behaviour” (or policy), i.e. an adjustable subset B'c ⊂ B' of behavioural rules (s, a), 
with at most one rule for each possible s ∈ S. 

• A goal test, i.e. a function of the kind S × S → {0, 1}. The goal test is applied to each 
state s visited to check if it corresponds to the goal sg (the outcome of the test is positive 
or negative respectively). 

• (Eventually) other tests, based on the “costs”, “length”, etc., to manipulate the behaviour. 
• Some other data structures and algorithms used to modify the behaviour. 
The environment is made up of the following components: 
• Transition function: S × A → S, where the current state and action generate the following 

state. 
• The goal is the same during a trial, and changes at the end of the trials. The goal is set 

exogenously. 
The interaction with the environment is as follows: 
• At each time step of a trial the environment sends a goal state sg and a state s to the 

controller. 
• At each time step the controller executes an action a in the environment. 
The controller's task is to reach the goal states sg in each trial. To accomplish this task the 
controller follows this procedure (taskable planning): 
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• Lookahead. At each time step the controller searches for the behavioural rules making up 
the behaviour B'c by using the model of the environment P ,the goal test, and the other 
tests. 

• Action execution. At each time step, on the basis of the state of the environment s, the 
controller selects a behavioural rule from the behaviour B'c and executes the 
corresponding action a in the environment. 
 

Observations. According to the previous formalisation, “learning of behaviour” is a 
procedure that changes the behaviour on the basis of the reward signal coming from the 
environment, i.e. on the basis of experience in the world. Usually, as it is done in 
reinforcement learning, this procedure works by trial-and-error, i.e. it “guesses” a behaviour, 
tests it by the world and then tries to improve it on the basis of the consequences in terms of 
reward. An important consequence of this is that learning of behaviour needs to experience 
the goal many times in order to become capable of achieving it efficiently. On the contrary (in 
principle) planning does not need experience in the world before acting appropriately. In fact 
the core of planning is a search procedure carried out on the basis of the model of the 
environment. This procedure tries to find a suitable linked combination of behavioural rules 
that satisfies the test goal and eventually other tests. An important consequence of this is that 
planning can potentially prepare a plan and then act and reach the goal efficiently in “one 
shot”. The search procedure of planning can work in many ways. An example are the 
searching and planning methods reviewed in chapter 2, based on systematic explorations of 
the possible combinations of the behavioural rules. Another example could be a simulated 
annealing procedure (Russell and Norvig, 1998, pp. 113-114) that searches in the space of the 
behaviours and uses the goal test and the other tests to find a “good” one. Other examples are 
the neural network planners inspired by the Dyna architectures presented in the following 
chapters. 

5.1.3 Taskability: Reactive and Planning Controllers 

We are now in the position of clarifying in which sense reactive controllers and planning 
controllers can be taskable (cf. also Sutton, 1991; Russell and Norvig, 1995, p. 790, on the 
concept of taskability). In the case of the “behaviour learning controller” the signal of the 
motivation plus the state of the environment are the input to the system. If the controller can 
receive |M| different motivations, than a user can train the controller to achieve |M| different 
goal states by associating a proper reward function to them. Notice that m can be a part of s, 
for example it can be a particular vocal command pronounced by the user. This implies that 
there are no practical limits for the number of possible motivations. Notice also that the 
reward r itself can be a part of s, for example it can be a particular “rewarding” word 
pronounced by the user in some circumstances. In the previous presentation m and r have 
been distinguished from s for the particular role they assume in affecting learning and 
behaviour. 

After training is accomplished for some motivations and goals, the user can direct the 
controller to pursue the various goal states by giving the corresponding motivation signal to it. 
Notice that in this way the controller can be directed to achieve only the goals for which it has 
been trained. If the user wants that the controller pursues a new different goal, it has to: 
• Furnish a new motivational signal. 
• Train the controller with a new reward function. In practical terms this means that the 

user, or some other mechanism in the environment, has to be there while the controller 
learns, and has to furnish a reward when the controller achieves the goal. 



 

 

 

In these cases, where “a particular motivational signal and a particular reward function are 
used for each goal”, we say that the controller is “taskable in a weak sense”. 

The case of the “taskable planning controller” is different. If a user wants to assign any 
new goal to the controller, it is only necessary to assign the desired goal sg to the controller. 

This means that there is no need of a new reward function for each new goal. In fact the 
test goal, internal to the controller, allows the controller itself to build and select the proper 
plan or policy. 
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taskable planner? There are two tests that the controller should pass to be classified as 
“taskable (in a strong sense)”: 
• The controller receives the goal state “from outside”. Eventually the state transition 

function part of the model of the environment is given to the controller. The controller 
does not need any other information to achieve the goal. In particular it needs no 
information about the reward function or the reward. 

• When the goal is assigned to the controller for the first time, the controller is capable of 
achieving the goal with an enhanced efficiency if compared to its reactive components (in 
the case there are some) or better than the random solution (in the case there are no 
reactive components). This criterion derives from the “one-shot nature” of planning. 

Notice that here only planning controllers that work by “compiling” the outcome of planning 
into the reactive components are considered (cf. Mitchell, 1990; Dyna-PI architectures are 
compiling planners, cf. s. 3.3). In these systems the performance of the planning components 
plus the reactive components is at least comparable with the performance of the reactive 
components alone. These tests will be used to check if the controllers proposed and 
implemented in the later chapters are taskable. 

5.1.4 Taskability and Dyna-PI 

Now it is possible to clarify why Dyna-PI is not a taskable planner. As mentioned 
reinforcement learning algorithms need a different reward function, and a motivational signal, 
for each goal pursued. Dyna-PI architectures are based on a model of the environment that 
represent both the transition function and the reward function. The consequence of this is that 
Dyna-PI architectures are not taskable in a strong sense. In fact if a new goal is assigned to the 
controller, the controller does not have a model of the reward function for it. The only ways 
the controller can pursue the new goal are: (a) the controller is trained with the new reward 
function so that it can learn the part of the model of the environment related to it; (b) the part 
of the model of the environment related to the new reward function and goal is directly 
furnished to the controller. In both cases the controller does not satisfy the definition of 
taskability in a strong sense given previously. The consequence of this is that the only thing 
that an agent can do if it is assigned (or it selects) a goal is pursuing it on the basis of a 
random walk (see Lin, 1992). 

5.2 A Unified View of Heuristic Search, Dynamic Programming, and 
Activation Diffusion 

This section attempts to build a unified view of some important searching and planning 
methods analysed in previous chapters. These methods are: LRTA* (cf. s. 13.1.2) and trial-
based real-time asynchronous dynamic programming with deterministic environment (cf. s. 
13.2.11); Uniform cost search from the goal (cf. s. 13.1.1) and “cost” dynamic programming 
with deterministic environment (cf. s. 13.2.9 and 13.2.11); Dyna architectures (cf. s. 3.3) and 
“discounted” dynamic programming with stochastic environment (cf. s. 13.2.9); Activation 
diffusion planning (cf. s. 4.5.1) and “discounted” dynamic programming with deterministic 
environment (cf. again s. 4.5.1). The adjective “discounted” is used to refer to problems 
defined through goal states with positive rewards and non-goal states with 0 rewards (cf. s. 
13.2.1). The adjective “cost” is used to refer to problems defined on the basis of goal states 
conceived as absorbing state and costs caused by the execution of actions (cf. s. 13.1.2 and s. 
13.2.11). 
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All the methods just listed, abstracting from the details, are based on two steps: 
• Building a gradient field of “evaluations” (or “heuristic”) over the states, increasing 

(discounted methods) or decreasing (cost methods) toward the goal (in some cases an 
initial approximate heuristic or set of evaluations are available to the system). 

• Generating a plan (on-line or off-line) by “looking ahead” one step through a model of 
the environment, and by selecting the “closest” state to the goal according to the gradient 
field. 
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update the evaluations. Figure 5.3 proposes a unified graphic summary of the four possible 
combinations of these two dimensions. For graphical reasons, this figure shows a one-
dimensional space of states and represents graphically how the listed methods behave along 
the two dimensions. 
On the basis of the evaluations' nature, we can distinguish between: 
• Left part of Figure 5.3: cost methods  where the gradient field decreases linearly for states 

progressively closer to the goal (LRTA*, cost trial-based real-time dynamic programming 
with deterministic environment, cost dynamic programming with deterministic 
environment, and uniform cost search from goal). 

• Right part of Figure 5.3: discounted methods where the gradient field decreases 
exponentially for states progressively more distant from the goal (Dyna architectures, 
discounted dynamic programming with stochastic and deterministic environment, and 
activation diffusion planning). 

On the basis of the way the methods update the evaluations we can distinguish between: 
• Top part of Figure 5.3: methods that build the correct evaluation function, or heuristic, by 

iterative approximations (LRTA*, trial-based real-time dynamic programming, cost 
dynamic programming with deterministic environment, Dyna architectures, and 
discounted dynamic programming with stochastic environments). 

• Bottom part of Figure 5.3: methods that build the correct evaluation function one-shot 
(uniform cost search from goal, activation diffusion planning, and discounted dynamic 
programming with stochastic environments). 

Notice that only Dyna architectures and dynamic programming are capable of dealing with 
stochastic environments (top right part of Figure 5.3) while all other methods assume a 
deterministic environment. 

Summarising, in cases of absence of initial heuristic and repeated trials, the majority of 
methods considered in the previous chapters are based on the strategy of building a gradient 
field of evaluations and, in different measure, they are related to some form of dynamic 
programming. This means that the principles of evaluations and lookahead search on the 
basis of these evaluations are very general and powerful. This circumstance is very important 
for neural network planning. In fact it is relatively easy to conceive of ways to implement 
neural networks that learn to produce an evaluation gradient field over the states. The 
following chapters will show some ways to do this. 

5.3 Policies and Plans 

It is important to draw some conclusions on the differences between plans and policies. 
 

Plans. In its pure form a plan is a sequence of actions of the kind “a1, a2, a3,…” to be executed 
one after the other (cf. left of Figure 5.4). What is important is that there is an ordering 
between the actions: the execution of one action is conditional to the execution of the previous 
action in the plan, and is triggered by it. Notice that the plan execution is “blind” i.e. there is 
no monitoring of the actions' outcome. 
Policies. In its pure form a policy is a set of associations of state-action pairs of the kind “(s1, 
a1), (s2, a2), (s3, a3),…” for all the states of the state space (cf. right of Figure 5.4). A policy is 
executed as follows. At each time step the current state is detected, the list is scanned with the 
state being used as retrieval-key, and the action of the pair with the state corresponding to the 
current state is executed. Notice that there is no ordering between the actions i.e. the current 
state is sufficient to decide which action to trigger (this requires that the Markov property 
holds for the policy to be successful, cf. s. 13.2.2). 



 

 

 

 
Plans vs. Policies. The advantages of plans vs. policies are as follows: 
• Plans take less time to be prepared and less space to be stored in comparison to 

(complete) policies that require a huge amount of both. In fact plans focus on relatively 
few states and actions. 

• The information contained in the ordering of the action furnishes some kind of memory 
that can be useful with partially observable Markov decision problems (Wiering and 
Schmidhuber, 1998; cf. s. 13.2.2). 

The advantages of policies vs. plans are: 
• They are capable of coping with stochastic outcomes of action execution and non-perfect 

models of the environment because the execution of each action is based on the current 
state, and because the policy specifies what to do for each possible state visited. Plans 
have more problems in dealing with these situations because they are committed to a 
particular ordering of actions, and do not “know” what to do in case of unexpected 
outcomes of actions' execution. 
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.4: Example of plan (left), conditional plan and partial policy (centre), and policy (right). Cf. 
details. The dotted curves are drawn around the area of the state space on which the different 

methods are competent. 

onal Planning and Partial Policies. We have seen (cf. s. 2.3 and 2.4) that many 
 that have been implemented are different from the pure plan just illustrated. In fact 
ild plans that are partially ordered or use monitoring of the outcome of action 
n. In the case of “conditional planning” they use “perceptive actions” that returns 
pects of the current state that condition the plan's execution. As mentioned (cf. centre 
e 5.4 and s. 2.4.1) conditional plans are close to the concept of policy. On the other 
have seen that the idea of an satisfactory policy defined for each state is not viable in 
 so that the policies used in practice tend to focus on limited regions of the state space 
3.2.9, 13.2.10, 13.2.11). A partial policy is a policy that is satisfactory and well 
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defined only for few states among all possible ones. For all other states the policy uses some 
default criteria to select the actions (centre of Figure 5.4). 

On the basis of these considerations it can be concluded that the best strategies are 
probably to be found between the two extreme strategies of pure plans and pure policies. In 
particular this is what a good planner should do (cf. also s. 2.4.4): 
• Use partial policies (or conditional plans, cf. centre of Figure 5.4). This means that when 

planning the controller should prepare to act in some states that deviate from the states 
that the controller expects to visit with high probability. 

• The possible extra states to consider in the partial policy should be only the ones that 
have a probability of being visited over a certain threshold, given the noise caused by the 
(eventually) stochastic policy and the stochastic outcome of actions. 

• Replan (cf. s. 2.4.2) when some states different from the ones considered in the partial 
policy, are encountered during the actions' execution. 

• Monitor the states visited during actions' execution to guide the selection of the partial 
policy's actions and the decision of replanning. 
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PART 2 

DESIGNING AND TESTING NEURAL PLANNERS 
 
This second part of the thesis presents the empirical investigations of the research. Each 
chapter is organised around some problems and has a fixed structure. Each chapter starts with 
an introduction that presents the set of problems which the chapter deals with, gives an 
overview of the neural controller used in the experiments, and highlights the novel traits of 
this controller by comparing it with other controllers existing in the literature. Then the 
chapter presents the details of the neural controllers and the simulation scenario with which 
the problems illustrated in the introduction are investigated. Next, the chapter presents the 
results of the simulations run with these controllers and their possible interpretations. Finally 
it presents the drawbacks of the controllers and draws the conclusions. 

The neural controller presented in each chapter is usually created by adding some extra 
components to the controller presented in the preceding chapters, so that the complexity of the 
controllers presented increases across the chapters. 

During the research, in order to guarantee the possibility of comparing the results of 
different simulations, an attempt has been made to keep the conditions under which they have 
been run consistent, to use the same measures of performance and behaviour, and to present 
the data in the same format. However, this has not always been possible, since experiments 
have been run over a long period of time during which new ideas, problems and developments 
have arisen. As a consequence, the results across the chapters are sometimes not fully 
comparable in quantitative detail, and are sometimes presented with slightly different formats 
(scale of graphs, details of moving averages, etc.). The results within each chapter have been 
produced with the same conditions and presented in similar ways so that they should be fully 
comparable. 
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6 Neural Actor-Critic Reinforcement Learning 

6.1 Introduction: Basic Neural Actor-Critic Controller and Simulations' 
Scenarios 

Problems Tackled. This chapter presents a neural implementation of the actor-critic 
controller. This controller is at the basis of the reactive and planning controllers presented and 
investigated in the following chapters. It also presents the simulated landmark-navigation 
scenarios used to test these controllers. Two kind of landmark navigation scenarios will be 
presented that have different levels of complexity. One scenario has landmarks only outside 
the arena where the simulated robot moves, and another scenario has landmarks inside the 
arena. In the later case the landmarks also have the role of obstacles. The components of the 
basic neural actor-critic controller are tested with these scenarios to collect data to be used to 
interpret the more sophisticated controllers presented in the following chapters. 

The chapter also investigates how the generalisation and noise tolerance properties of the 
neural controller presented accelerate learning, but also how they exacerbate the “aliasing 
problem” (cf. s. 13.2.2). Some simulations show the effects of the variation of some 
parameters of the model and some parameters that control noise, and furnish a justification for 
the choice of some aspects of the controller's architecture. 

A last problem that the chapter tackles is the capacity of discounted reinforcement 
learning to deal with long periods of time. In particular some simulations show that it has 
problems to update the evaluations and the actions' probabilities for states far from the goal. 
This problem is crucial if reinforcement learning methods are used to implement planning, as 
planning is most useful when it is applied to long periods of time, as happens with abstract 
planning (cf. s. 11.4.4). 

 
Overview of the Controller. The general functioning of the controller can be described as 
follows. The actor, a feed-forward neural network, yields a stochastic action-selection policy, 
and the evaluator, a second feed-forward neural network at the core of the critic, evaluates the 
states of the environment in terms of expected future rewards achievable with the current 
actor's policy. The evaluator improves the quality of the evaluations, by experiencing the 
rewards, through a supervised learning algorithm, while the actor improves the action-
selection policy, by increasing the probabilities of actions that bring the controller to ascend 
the gradient field of evaluations, through a trial-and-error process. 

 
What is New and Related Work. The actor-critic controller implemented in this chapter 
differs in some aspects from the actor-critic models proposed in Sutton and Barto (1998, p. 
151). For a neural implementation of this model see Lin (1992). See Sutton and Barto (1998, 
pp. 197-200) for the general principles of implementing reinforcement learning controllers 
through “gradient descend methods” such as the Widrow-Off rule (Widrow and Hoff, 1960). 
The major differences between the controller presented here and the controllers presented by 
these authors are the following ones: 
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• Actions' probability distribution of the “actor”. The actor presented here uses a function 
used to build the actions' probabilities that is simpler than the popular soft-max function 
shown in Eq. 13.19. Though popular, the soft-max function yields a distribution that has 
not been demonstrated to be better than other distributions. For example Thrun (1992) 
shows some cases where it is actually worse than the ε-greedy policy (for which cf. s. 
13.2.5). Some simulations with the scenarios presented later have shown that the soft-max 
function leads the actor to converge too fast, and this worsens the negative effects of the 
aliasing problem (cf. s. 6.4.3). For these reasons a function that is simpler than the soft-
max function and converges more slowly has been used to build the probability 
distribution of actions (cf. Eq. 6.1). 

• The “matcher”. As we shall see the controller presented here uses a hand designed neural 
network called “matcher” to internally produce the reward signal (cf. s. 6.3). After the 
simulated robot is assigned a particular goal (the state that the simulated robot has to 
pursue) the matcher returns a reward 1 if the goal has a similarity with the current input 
pattern above a certain threshold, otherwise it returns a reward 0. This is different from 
what happens within the standard reinforcement learning controllers, where the reward is 
thought of as being given from outside the controller when the controller reaches the 
desired state (cf. Sutton and Barto, 1998, pp. 56-57). This difference is of little 
importance in the context of simple reinforcement learning controllers, but it is quite 
important in the context of planning because it allows the controller to be taskable in a 
strong sense (cf. s. 5.1 and chapter 8). 

See also Nehmzow et al. (1989) for an interesting actor-critic architecture that uses “instincts” 
(hardwired behaviours and task-related criteria for the critic) to enhance the performance and 
learning of a robot. 

The problem presented in s. 6.5, related to the effects of the errors caused by function 
approximation when discounted reinforcement learning is used, has already been investigated 
by McDonald and Hingston (1994). This work has been pointed out during the PhD’s viva, so 
the problem has actually been “rediscovered” during the PhD research. McDonald and 
Hingston present a theoretical analysis of the problem, and some empirical results to identify 
the problem domains that are more sensitive to it. Here, s. 6.5 presents an empirical 
investigation of the particular effects that the problem causes on the state values computed to 
solve a landmark navigation task. 
 
Chapter's Outline. S. 6.2 presents the scenarios and the simulated robot used in the 
simulations throughout the research. S 6.3 presents the architecture of the neural actor-critic 
controller used in this chapter. S. 6.4.1 presents the functioning of the matcher, while s. 6.4.2 
presents the functioning of the evaluator and actor. S. 6.4.3 illustrates the effects of the 
aliasing problem, while s. 0 presents the effects of the variation of some important parameters 
of the controller and the scenarios. S. 6.4.5 justifies the particular choice of the pre-processing 
component of the model. S. 6.5 presents some simulations that suggest that discounted 
reinforcement learning have some limitations in dealing with long periods of time. Finally s. 
6.6 draws the conclusions of the chapter. 

6.2 Scenarios of Simulations and the Simulated Robot 

The simulations considered in this thesis mainly use two scenarios. The first scenario is 
shown in Figure 6.1. It is a square arena with sides measuring 1 unit, outside of which there 
are 4 circular landmarks of different sizes. The second scenario used in the simulations is 
shown in Figure 6.2. It is again a square arena with sides measuring 1 unit, but this time it has 



 

5 circular landmarks inside. These landmarks are also obstacles for the simulated robot. Other 
scenarios used in the simulations will be described later. 
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Figure 6.1: Left: one of the scenarios used in the simulations. It contains three possible goals (stars), 
four landmarks (black circles), the scope of the simulated robot's 50 visual sensors (delimited by the 
rays), and the simulated robot (white circle at origin of rays). The position occupied by the simulated 
robot is considered as “start position” in some simulations. Right, from top to bottom: the pattern of 
the visual sensors’ activation, its re-mapping into contrasts, the three goal positions north-east, north, 

centre (as contrasts relative to the images viewed from the goal positions). The letters near the 
landmarks help to identify their respective positions on the “image” of the retina’s activation shown on 

the right. 

 
The simulated robot can see the landmarks with a one-dimension horizontal retina 

covering 360 degrees (throughout the thesis, the graphs about the retina show the activation of 
the sensors clockwise starting from those oriented toward the south). Notice that the simulated 
robot cannot see a landmark that is behind another landmark, and perceives just a “big” 
landmark if there are two or more landmarks that are contiguous in sight. The retina is made 
up by 50 units (vector x). Each unit xi activates with 1 if a landmark is in its scope, with 0 
otherwise. This activation is affected by noise (0.01 probability of flipping for each sensor) in 
the majority of the simulations of this research. It will be explicitly indicated when the entity 
of this or other sources of simulated noise are different from the ones indicated in this section 
(cf. s. 6.4.3 for an analysis of some effects of the variation of this and other sources of noise). 
The signals coming from the retina are always aligned with the magnetic north through a 
“compass”. The reading of the compass is affected by Gaussian noise (0 mean, 1 degree 
variance) in the majority of the simulations of the research. 

Before being sent to the controller, these signals are re-mapped into a vector y of 100 
binary units representing the image “contrasts” (contrasts between the landmarks, perceived 
as “black”, and the “background”, perceived as “white”). Two contiguous retinal units give 
unit activation to one contrast unit yj if they are respectively on and off, to another contrast 
unit if they are respectively off and on, and to no contrast units if they are both on or both off. 
This simple re-mapping performs edge detection and implements an expansion of the input 
space that allows the controller to work properly by using simple two-layer networks for the 
controller, in the scenarios considered here (cf. s. 6.4.5 for the justification of this choice). 
Notice that the simulated robot has a limited perception of the environment's current state (cf. 
s. 13.2.2 on partially observable Markov decision problems, and Wyatt et al., 1998, for the 
importance of the “Markov assumption” for mobile robots). 



 

 

 

At each cycle of the simulation the controller has to select one of eight actions, each 
consisting of a 0.05 step in one of eight directions aligned with magnetic north (north, 
northeast, etc.). The outcome of these actions is affected by Gaussian noise. In the majority of 
the simulations of this research this noise has a 0 mean and 0.01 variance. If the simulated 
robot moves against the arena's boundaries or the obstacles it “bounces back”, i.e. it is set at 
the old position. 
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 scenario used in the simulations. It contains three goals (stars), five 
scope of the simulated robot's 50 visual sensors (delimited by the rays), 
 circle at origin of rays). The position occupied by the simulated robot is 
in some simulations. Top right, in the order: the sensors' activation, the 
e contrast patterns corresponding to the three goal positions, northwest, 

ectively. The letters near the landmarks help to identify their respective 
e “image” of the retina’s activation shown on the right. 

 Algorithms 

etails of the neural actor-critic controller. The components of this 
re 6.3. 
nents are analysed, starting from the matcher. An autonomous 
ent learning is endowed with structures that take input from the 

eward” or “punishment” internal signal when some states of the 
elevant for the robot itself (e.g. some important resources). When 
nning, it still needs to generate reward and punishment signals to 
owever, unlike a reactive robot, the planning robot has to be 

signals in correspondence to any goal that is assigned to it. In the 
 here, this is done by the “matcher”, a neural network that 
 comparing the goal with the “simulated input patterns” generated 
 of this will be clarified in chapter 8). To make the simulations 
lanning simulated robots comparable, this research has used the 
es (i.e. for all the experiments reported in the thesis). See also 
) on these issues. 
atcher are explained. The architecture of the matcher is showed 

s a hand-designed neural network that yields 1 as output when the 
nits encoding the goal, i.e. the image of the landmarks from the 
r to the second part (100 units corresponding to the current input 
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or mental image). Otherwise it yields 0. The matcher is composed of 100 sub-networks each 
taking as input the two bits with same position of the two input parts, and implementing an “if 
and only if” logic function (00 1, 01 0 10 0 11 1). The output of these sub-networks is 
then summed, normalised to 1 (dividing it by 100), and compared with a threshold 
(“recognition threshold”) to produce the matcher output (0 or 1). The threshold is usually set 
at 0.94 throughout the research. This implies that the matcher recognises an input as the goal 
if they share at least 94% of “bits”. 

 
 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.3: Components of the basic neural actor-critic controller. Arrows indicate that a pattern is 
“copied” from one unit/layer to another unit/layer. Dotted arrows indicate the learning signal. For each 
layer, only few units have been drawn. The missing units are marked by three aligned black dots. The 
total number of units of each layer is indicated in round brackets. The horizontal connection within the 

TD-critic copies the unit's signal with a one step delay (see text). The details of the matcher are 
expanded in Figure 6.4. 

 

The actor is a two-layer feed-forward neural network that receives the contrast pattern as 
input and has eight sigmoidal output units that locally encode the actions (cf. Baldassarre and 
Parisi, 2000, for an actor with a distributed representation of actions). To select an action, the 
activation mq (interpretable as “action merit”) of the output units is sent to a stochastic 
selector that implements a stochastic “winner-take-all competition”. The probability Pr[.] that 
a given action aq becomes the winning action awin (to execute) is: 

 
 P[aq = awin] = mq / Σf[mf] Eq. 6.1
 
The evaluator is a two-layer feed-forward neural network that receives the contrasts as 

input and with its linear output unit yields the estimate V'π[yt] of the evaluation Vπ[yt] of the 
contrast pattern yt. Vπ[yt] is defined as the expected discounted sum of all future 
reinforcements r, given the current actor's action-selection policy π (cf. Eq. 13.9): 
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 Vπ[st] = E[r t+1 +γ r t+2 +γ2 r t+3 + …]        0 < γ < 1 Eq. 6.2

 
where γ is the discount factor (set to 0.95 in the simulations of this chapter), and E[.] is the 
mean operator. 

The TD-Critic is an implementation in neural terms of the computation of the Temporal-
Difference error e defined as (cf. Eq. 13.15): 

 
 et = (rt+1 +γ V'π[yt+1]) - V'π[yt] Eq. 6.3
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robot to new states with an evaluation higher than the average evaluation experienced 
previously by moving from that same state. The change of the merits is achieved by updating 
the weights of the neural unit corresponding to awin, and only this, as follows: 

 
 ∆wwin j = ζ et (4 mwin (1 - mwin)) yj Eq. 6.5

 
where ζ is a learning rate (set to 0.1 in the simulations of this chapter) and (4 mwin (1 - mwin)) 
is the derivative of the (sigmoidal) transfer function multiplied by 4 to homogenise the size of 
the learning rates of the actor and the (linear) evaluator (in fact the maximum of that 
derivative of the transfer function is 0.25 for the actor, and 1 for the evaluator). 
 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.5: Case of the scenario with 4 landmarks outside the arena. The graphs show the activation of 
the matcher for the three goals (first, second and third columns of graphs), without (top row) and with 
(bottom row) noise of the sensors and the compass. Each single graph shows the output of the matcher 
in 30×30 different positions of the simulated robot on the arena (grid). White cells mark positions that 
the matcher recognises as goal (here the mather's output is 1). Black cells mark positions similar to the 

goal where the activation potential of the matcher's output unit (before being compared with the 
threshold) is over 0.84. Grey cells mark positions where such activation is below 0.84. 

 
Particular attention has to be paid to the training of the evaluator when the tests are 

broken into “trials”, for example when the simulated robot is set at a new position chosen 
randomly after it reaches the goal. In this case problems may arise. This is true in general, but 
using generalisation methods as neural networks exacerbates the problems. In particular Eq. 
6.3, Eq. 6.4, and Eq. 6.5 need to be modified in two ways at the end and beginning of each 
trial: 
• When the reward is 1 at the end of a trial (the goal has been reached) V'π[yt+1] needs to be 

set at 0. In fact the evaluator will tend to return a V'π[yt+1] > 0 because yt+1 tends to be 
similar to yt. This causes the target (rt+1+ γ V'π[yt+1]) used to adjust V'π[yt] when the goal 
is reached at t+1, to grow above 1. In turn V'π[yt+1] grows even more following V'π[yt] 
(again because yt+1 is similar to yt) generating a dangerous positive feedback that in some 
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conditions leads the evaluations to grow indefinitely. Setting V'π[yt+1] to 0 produces a 
stable gradient field with evaluations equal to 1 for the states around the goal, and 
evaluations that decrease smoothly for states progressively more distant from the goal. 

• When a new trial starts, i.e. when the simulated robot passes from the last state of the 
previous trial to the first state of the new trial, both the learning coefficients of the actor 
and the evaluator have to be set at 0. This has to be done because there is not an “old 
evaluation” to be updated on the basis of the current evaluation, and because there is not 
an “old state” with regard to which the action's probabilities need to be updated. 

At the beginning of the simulations, the weights of the evaluator and actor are randomised 
within the interval [-0.001, +0.001], so the evaluations expressed by the evaluator's linear 
output unit are around 0, and the merits (and probabilities) expressed by the actor (and 
stochastic selector) are around 0.5 (and 0.125). This implies that initially the simulated robot 
explores the environment randomly, and then it starts to shape the evaluations on the basis of 
the rewards and the probabilities on the basis of the evaluations. 

6.4 Results and Interpretations 

6.4.1 Functioning of the Matcher 

This section illustrates the functioning of the matcher with and without the noise affecting the 
sensors and the compass. Figure 6.5 shows the output of the matcher in different conditions 
for the three goals illustrated in Figure 6.1. Figure 6.6 shows the output of the matcher in 
different conditions for the three goals illustrated in Figure 6.2. Three relevant facts become 
apparent from these graphs. 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.6: Case of the scenario with 5 landmarks inside the arena. The graphs show the activation of 
the matcher for the three goals (three columns) without and with noise (two rows). The interpretation 

of the graphs is as in Figure 6.5. 
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The first is that the Matcher is capable of distinguishing between input patterns very 
similar to the goal and input patterns different from it. The recognition threshold of the 
matcher can be regulated so that the sensitivity of the matcher is the desired one. 

The second relevant fact is that the matcher shows an acceptable robustness for the noise 
affecting the input and the compass. Unluckily, the simulations have also shown that the noise 
affecting the pattern of the goal is quite disruptive, especially for planning (cf. later chapters). 
This problem has been successfully solved throughout the research by taking an “average 
input pattern” as goal, so to eliminate noise. In particular to build this average pattern, the 
simulated robot has been set at the goal position, 30 noisy input patterns have been recorded, 
and then averaged bit by bit. Then to build the pattern used as goal the average for each bit 
has been compared with 0.5. Each bit of the goal pattern has been set at 1 or 0 if this average 
was respectively above or below 0.5. 

The third interesting fact is that the graphs give a good idea of the potential generalisation 
properties of the neural controller based on the use of the (contrast) features. The case of the 
scenario with 4 landmarks outside the arena (Figure 6.5) clearly shows that the controller can 
strongly generalises along the lines that take from one particular position to the landmarks. 
For example (cf. graphs) several positions between the goal and a particular landmark are 
considered similar to the goal position by the controller because from them the same 
landmark is visible in the same direction. Figure 6.6 shows that with the more complex 
scenario (landmarks inside the arena), the possible generalisation is more fragmented. As we 
shall see below, in this case generalisation still produces positive effects in terms of learning 
speed (cf. s. 6.4.2) but it also causes some confusion between different but similar states (cf. s. 
6.4.3). 

The illustration of a drawback of the matcher concludes this section. The drawback is the 
need to regulate the parameter of the recognition sensitivity. At least with the simple 
simulated robot's sensory apparatus adopted here, this parameter has proved to be very 
sensitive. In some cases of the simulations illustrated in this thesis it has been necessary to set 
it at a value different from the one generally used (0.94) because otherwise the area of 
recognition was too wide or too small. For example this has been the case of the northeast 
goal shown in Figure 6.2, for which the value of the parameter has been set at 0.96. 

6.4.2 Performance of the Controller: The Critic and the Actor 

Now the attention is directed to analysing both the behaviour of the evaluator, the major 
component of the critic, and the performance of the actor. Two types of simulations have been 
run to this purpose. In the first type of simulation, divided into trials, the simulated robot had 
to reach one goal position. When this happened, the simulated robot was set at another 
position chosen randomly, and another trial started. This was repeated several times. The 
second type of simulation was similar to the previous one, with the difference that the 
simulated robot was always set at the same start position at the end of each trial. Both 
simulations have been run with three different goals and by using the two scenarios illustrated 
in Figure 6.1 and Figure 6.2. The two Figures the scenarios also show the position of the start 
position and the three goals. 

The first data collected are relative to the functioning of the evaluator in the case of 
random restart. Figure 6.7 shows the gradient field of the evaluations for the three goals in the 
case of the simple scenario after the goal has been reached the first time, after 300 steps from 
this event, and when the performance has reached a steady state (see below). 

Some facts become apparent from these graphs. The most important is that the 
generalisation capacity of the controller implies that reaching of the goal once is sufficient to 
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update the evaluations of several states, not only the one directly preceding the goal state (cf. 
top row of graphs). This confirms what anticipated through the analysis of Figure 6.5. This 
generalisation capacity of the controller is very important because it speeds-up learning (The 
importance of generalisation for speeding up learning processes is considered very important 
in the literature, cf. s. 13.2.8). 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.7: The graphs shows the gradient field of evaluations V'π[yt] for the three goals (three 
columns) of the four landmarks scenario. For each graph, the cell with a bold border indicates the 

position of the goal pursued. The first row of graphs indicates the gradient field right after the goal has 
been reached for the first time. The second row of graphs indicates the gradient field 300 steps after 
this event. The third row of graphs indicates the gradient field at the end of training. To build each 

graph the simulated robot has been set at 20×20 different positions on a grid overlapped to the arena, 
and the evaluation yielded by the evaluator has been measured. The size of the white (or black) 

squares is proportional to the positive (negative) evaluation given in that position. The big white cells 
scattered irregularly in the graphs are caused by temporary noise of the sensors. In the first and second 

row of graphs the gradient field is not precisely centred on the goal because the simulated robot has 
built it on the basis of the state from which the goal state has been encountered, and because the area 

recognised as goal is often bigger than a single cell (cf. Figure 6.5). 

 
The generalisation property of the controller has also some costs. One is that some of the 

evaluations assigned to some states through generalisation may be wrong. This can be seen by 
considering the middle row of graphs of Figure 6.7. These graphs show the gradient field of 
the evaluations 300 steps after the goal has been reached. Some negative evaluations can be 
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seen (black cells), while the evaluations over the entire arena should be positive, since only 
positive rewards are involved in the task. This is caused by the fact that some of the 
evaluations assigned to some states through generalisation after the goal has been reached, are 
too high. As the simulated robot visits these states and directly (i.e. not on the basis of 
generalisation) updates their evaluations, these evaluations are lowered (this can be clearly 
observed while the simulations are running). Generalisation implies that the evaluations of 
other similar states are lowered too. If these evaluations were near 0, as they are for some 
states (see first row of graphs), the net effect is that they are pushed towards negative values. 
Summarising, the negative evaluations visible in the graphs reveal evaluation errors caused by 
the generalisation property of the controller. Luckily, the controller is capable to correct these 
errors as the training goes on, as shown by the bottom row of graphs of Figure 6.7. 

 

 

 

 

 

 

 

Figure 6.8: Learning curves for the first scenario with four landmarks outside the arena. Y-axes: 
number of steps per goal reached, averaged over the last 100 successes (a simple average is considered 

before 100 successes are accumulated), and averaged over 10 simulations run with different random 
seeds. X-axis: steps. Left: performance of the simulations run by setting the simulated robot at a 

randomly chosen start or to the same start at the end of each trial. Right: graph that shows the standard 
deviation of the simulations run by setting the simulated robot at a random start. 

 
Figure 6.8 shows the learning curves for the two types of simulations described 

previously (random and fixed restart) for the first goal. The graph shows the performance of 
the simulated robot measured in terms of steps taken to reach the goal. For each run this 
measure is averaged over the last 100 goals reached (at the beginning, with less than 100 
goals reached, a simple average has been used) and then averaged over 10 simulations run 
with different random seeds. From the graph it is apparent that the performance of the 
simulated robot improves from about 2000 steps per success, to about 25 steps per success. 
Since the robot’s step is 0.05 long and the arena is 1 by 1, the optimal path to the goal is on 
the average about 10-15 steps long, both for the random and the fixed restart conditions (but 
consider that action noise and obstacles make the task more difficult). The right end of the 
figure gives an idea of the variance of this kind of simulations when they are run with 
different random seeds. This is useful to interpret the results of the following chapters when 
different controllers are compared. 

Figure 6.9 shows the behaviour of the evaluator in the case of the second more complex 
scenario with landmarks inside the arena. It can be seen that also in this case the 
generalisation property of the controller allows the system to attribute an evaluation different 
from 0 to many states after the goal has been reached one time only (top row of graphs). This 
evaluations make up a gradient field that has a certain tendency to decrease for states 
progressively more distant from the goal, but it is also much more irregular than the case with 
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the simple scenario. The middle row of graphs shows that the controller has to do several 
adjustments to correct the evaluations (there are many negative evaluations). When the 
training goes on for several trials, the controller adjusts most of the “wrong” evaluations, but 
is not capable of fully correcting them. In fact the bottom row of graphs shows that there are 
some residual negative evaluations, and that the positive evaluations are still quite irregular. 
This is caused by both the simplicity of the contrast re-mapping and the neural architecture of 
the evaluator that is based on a simple two layer neural network with few degrees of freedom 
(cf. discussion in s. 6.4.5). An attempt to further analyse the reasons for the shape of the final 
gradient field in the case of complex scenarios is done in s. 6.4.2. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.9: The graphs shows the gradient field of the evaluations V'π[yt] for the three goals (three 
columns) of the complex scenario with landmarks inside the arena. Cf. the label of Figure 6.7 for the 

interpretation of the graphs. 

 
Figure 6.10 shows the learning curves of the controller in the case of the more complex 

scenario, for the first goal (northeast). The first interesting fact is that the controller is capable 
of coping with the irregularity of the evaluation gradient field just considered and to solve the 
task. In fact, the performance of the simulated robot improves from about 1400 - 1600 to 
about 25-40. The second fact is the difference between the random start and the fixed start 



 

 

 
81 

simulations. Why with the complex scenario is there this difference while there was no 
difference for the simple scenario (cf. Figure 6.8)? A tentative explanation is that the random 
restart favours the correct updating of all the evaluations, and this in turn favours a correct 
training of the actor. In contrast, the fixed-restart simulations predominantly visit a few 
particular states, causing problems when other states are visited (cf. Barto et al., 1995). This 
difference is more important for the complex scenario because, as we have seen, 
generalisation tends to produce less correct evaluations. 

The difference of the initial performance between the simple and complex scenario 
simulations is not significant given the large variance of the performance itself at the 
beginning of the simulations. 

 

 

 

 

 

 

 

Figure 6.10: Left: learning curves with the complex scenario with landmarks inside the arena, for both 
the random and the fixed start conditions. The y-axis indicates the number of steps per goal reached, 

averaged over the last 100 successes (a simple average is considered before 100 successes are 
accumulated), and averaged over 10 simulations run with different random seeds. The x-axis indicates 
the steps. Right: graph that shows the standard deviation of the simulation run with the random start 

condition. 

 
This section is concluded with an observation on the issue of the “TD(λ)” algorithm 

(Sutton and Barto, 1998, p. 163-191) that parallels the generalisation property of controllers 
that use function approximation methods (cf. s. 13.2.8). The TD(λ) algorithm is a 
reinforcement learning algorithm that allows the controller to extend the effects of one backup 
to many states visited before the current state. As we have seen, the generalisation property of 
the neural controller used here was already capable of extending the effect of one backup to 
several other similar states. These effects are similar to the effect that the TD(λ) algorithm 
would have produced. Indeed, a preliminary exploration of the TD(λ) algorithm within the 
scenarios considered here has shown that the algorithm did not improve the performance 
significantly, because generalisation already extended the effects of learning to several states. 
For these reason the TD(0)  algorithm has been adopted in the rest of the research. 

 

6.4.3 Aliasing Problem and Parameters' Exploration 

This section concentrates on the “aliasing problem” (cf. s. 13.2.2) and on the exploration of 
some parameters of the controller. 
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Figure 6.11: Results of three simulations run with the three different goals (indicated by stars) and 
various scenarios. The three rows of graphs refer to the three goals. Left column of graphs: scatter of 
the positions occupied by the simulated robot, where one dot indicates one position occupied by the 

simulated robot. The dots have been collected running the simulations for several cycles after the 
simulated robot achieves a steady good performance. The higher the relative density of the dots on an 

area of the arena, the more likely that the simulated robot occupies that area of the arena while 
moving. Right columns of graphs: evaluation gradient fields corresponding to the scenarios/tasks 
showed on the left column. The arrows highlight the areas where the evaluations appear high in 

comparison to their surroundings. Compare these areas with the scatter graphs on the left: they tend to 
correspond to areas with a high density of dots. 

 
Aliasing Problem. The aliasing problem originates from the simplicity of the sensory 
apparatus of the simulated robot. This returns only partial information about the current state 
of the environment, for example the position currently occupied by the simulated robot. This 
can generate confusion between states that are different but appear to be similar through the 
simulated robot's sensory apparatus. Figure 6.11 shows that the aliasing problem is one of the 
major causes of the irregularity of the gradient field observed in Figure 6.9. They show that 
the problem is particularly impairing when some positions are very similar to the goal 



 

 

 

position. In fact in these cases the evaluator tends to assign high evaluations to them, as it 
does for the goal position. This gives a wrong signal to the actor that learns to drive the 
simulated robot toward positions with high evaluations. 
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) that creates an aliasing state (indicated by the white 
 the goal position (top) and at the “aliasing” position 
nly for the position of one landmark, the one at the 

s visible in the two situations appear quite similar even 
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the performance is still good (about 25) the scatter graph shows that the simulated robot is 
“attracted” by the “aliasing area” that has an image similar to the image of the goal area. The 
right part of the figure shows that the reason of this is that the evaluations are high in this 
area. 

Probably there are several sources of errors that explain the irregularity of the gradient 
fields shown in Figure 6.9 and Figure 6.11, for example the small number of degrees of 
freedom available to the controller and the high level of the learning rates used (cf. s. 6.4.5 
and last part of this section). However, the aliasing problem seems to be among the most 
important ones. 

6.4.4 Parameter Exploration 

Some other simulations have been run to explore the effects of using parameters with values 
different from the ones used in the previous simulations. 

If the noise of the compass and the sensors is augmented, the aliasing problem gets 
worse: doubling their size (variance and probability respectively) prevents learning from 
converging because the simulated robot gets stuck in areas with high erroneous evaluations. 
Compass noise is particularly disruptive since the system is not capable of adjusting image 
rotations. The controller is very robust with respect to the noise of the effectors. Doubling its 
variance does not prevent the critic and actor from converging. 

Augmenting the number of sensors improves the quality of the gradient field, but only if 
there is no noise in the sensors and the compass. In this respect, the noise in the compass is 
very disruptive since the advantages of having many sensors, each with a small scope, are 
eliminated if the sensors have a varying alignment with magnetic north. 

The learning rates are quite important. High levels of the learning rates, around 0.1, such 
as the ones used in this section, allow a quick convergence of the evaluations, as shown by the 
first row of graphs of Figure 6.7 and Figure 6.9, and hence of performance. However, they 
also have three drawbacks, observed in several simulations. One is that they make the 
gradient field quite unstable and changeable in the course of the simulations. The second is 
that if they are too high (more than 0.1) they cause the evaluations to “explode” towards high 
positive and negative values. The third is that they augment the negative effects of the aliasing 
problem: the simulated robot gets stuck in areas where the evaluation gradient field has local 
maxima more easily. In the course of the research the learning rates have usually been chosen 
as high as possible but low enough to keep these drawbacks under acceptable limits. 

6.4.5 Why the Contrasts? Why no more than the Contrasts? 

Now there are enough elements to justify the use of the “contrast pre-processing” illustrated 
in s. 6.2. We have seen that the aliasing problem is quite impairing when complex scenarios 
with landmarks inside the arena are used. It has been found that directly using the sensors' 
activation pattern as input for the evaluator and actor worsens the situation. The reason is that 
the local maxima of the evaluation gradient field illustrated previously are caused not only by 
the aliasing problem, which depends on the limitations of the simulated robot's sensors, but 
also by the small amount of degrees of freedom of the resulting evaluator and actor. In 
particular with 50 sensors and no contrast re-mapping, the evaluator has only 50 weights. This 
has the effect that the same weights are used for situations that are similar, and this in turn 
worsen the aliasing problem. 

With the contrasts re-mapping, the evaluator and actor has 100 weights. This means that 
the expansion of the input space into a bigger space before feeding the networks augments the 
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degrees of freedom of the two networks (cf. also Haykin, 1999, p. 257-258). Moreover, 
contrary to the previous situation where all the sensors corresponding to a landmark are active 
at each time step, few features are now active, namely only the ones that correspond to the 
two edges of each landmark. This allows the features to be more selective, and so alleviates 
the aliasing problem. 

In the previous section we have seen that, nothwithstanding this improvement, the 
aliasing problem is still present when the contrast pre-processing is used. Why was it decided 
not to use more sophisticated forms of pre-processing, such as the ones listed in s. 12.3? This 
has not been done for several reasons: 
• The focus of this research was not the solution of the aliasing problem. 
• The solution of the contrasts is very simple, so it does not complicate the interpretation of 

the results about planning, presented in the following chapters. 
• The solution using contrasts is computationally very fast, so it has made it possible to run 

the numerous experiments illustrated in the following chapters in an acceptable amount of 
time. 

• With few precautions, it has been possible to keep the aliasing problem under control. In 
particular it has been decided to use the scenarios presented in Figure 6.1 and Figure 6.2. 
These are scenarios where the aliasing problem is not so impairing. This is shown in 
Figure 6.14 that shows the scatter graph and the evaluation gradient field for one goal of 
the second of these scenarios, the more complex one. The situation is similar for the other 
goals used throughout the research within this scenario. 

•  
 

 

 

 

 

 

 

Figure 6.14: A scenario that is only slightly affected by the aliasing problem, as the scatter graph and 
the evaluation gradient field on the right show. Cf. the label of Figure 6.11 for the interpretation of the 

graphs. 

 

6.5 Temporal Limitations of Discounted Reinforcement Learning 

This section focuses on the capacity of discounted reinforcement learning to deal with 
problems whose solutions last for long periods of time. “Discounted” reinforcement learning 
is the most popular form of reinforcement learning (cf. Sutton and Barto, 1998), used 
throughout this research and illustrated in chapter 3. In this kind of reinforcement learning 
method the optimal evaluations decrease exponentially for states progressively more distant 
from the goal (cf. Figure 5.3). This section shows some experiments that suggest that this 
form of reinforcement learning has a limited capacity to deal with problems whose solution 
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last for long periods of time. In fact the states far from the goal have evaluations that are close 
to 0. As a consequence the learning signal built on the basis of two of such evaluations 
relative to two contiguous states (cf. Eq. 6.3) is also close to 0. This has two negative 
consequences: (a) learning based on this signal is slow; (b) the signal can be easily disrupted 
by noise. 

A simulation has been run to support these ideas. The scenario used in this simulation is 
shown in Figure 6.15. Unlike the previous sections, the simulated robot is now endowed with 
100 visual sensors (200 contrast units). These sensors and the compass are not affected by 
noise. The simulated robot moves in a one-dimensional space, say a corridor. At the left end 
of the corridor there is the start state, while at the right end there is the goal state. 

 
 

 

 

 

 

 

 

 

 

Figure 6.15: The scenario used to test the capacity of discounted reinforcement learning to deal with 
long periods of time. The black circles are the landmarks, the white circle is the start, the star is the 

goal, and the empty rectangle containing the start and the goal is the corridor along which the 
simulated robot is transported by the trolley. The trolley moves along the direction shown by the 

arrow. 

 
The simulated robot has only two actions: move_east and move_west. The simulated 

robot does not move autonomously. During each trial the simulated robot is “transported on a 
trolley” from the start to the goal following a straight line, for the reasons explained below. 
When the trolley with the simulated robot reaches the goal a new trial starts. Within a trial, the 
trolley reaches the goal in 100 steps. 

During these trials, the evaluator of the simulated robot is trained as usual, so after some 
trials the evaluations should converge to the optimal values and their gradient field should 
assume a typical exponentially decaying shape. At the same time the actor is trained in a 
special way. At each state the merit of the two actions is updated as if the simulated robot had 
selected both actions. This means that the go_left action is updated with an error built on the 
basis of the evaluations of the current and the previous state, while the go_right action is 
updated with an error built on the basis of the evaluations of the current and the following 
state. The use of the trolley and this special updating of the actions' merit are used to eliminate 
the effects of different frequencies of visit of the states, and the effects of different 
frequencies of the selection of actions, that would been produced by the simulated robot 
acting autonomously. This would make the interpretation of the results less clear. 
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Figure 6.16 shows the simulated robot's evaluation gradient field over the 100 states 
occupied by the trolley when it goes from the start to the goal. This figure shows the gradient 
field after 5, 50, and 500 trials. The top graph of the figure shows that the evaluations for the 
states near the goal have started to assume an exponentially decaying shape. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.16: Evaluations (y-axis) for the 100 states (x-axis) visited by the simulated robot on the 
trolley in each trial, after 5 (top), 50 (centre), 500 (bottom) trials. State 0 on the x-axis is the start while 

state 100 is the closest to the goal. 

 
Figure 6.16 also shows that the generalisation property of the evaluator allows a rapid 

diffusion of the values backward: states more than 5 steps far from the goal, that without 
generalisation would have evaluations equal to 0, have positive evaluations. However the 
graph also shows that generalisation has some drawbacks. For example the three “waves” of 
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high evaluations before the final wave close to the goal, are caused by the fact that the 
simulated robot encounters some landmarks that are in the same direction/position of other 
landmarks viewed from the goal position. The evaluation of these positions is high because 
the image that they produce is similar to the image at the goal position (aliasing problem). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.17: Difference between the probabilities of the go_east and go_west actions (y-axis), in 
correspondence to the 100 states visited by the trolley and the simulated robot (x-axis), after 5 (top), 

50 (centre), 500 (bottom) trials. 

 
The central graph of the figure shows that after just 50 trials the evaluation gradient field 

has almost assumed its final shape, even if its quality is still better for states closer to the goal. 
The final accurate shape assumed by the gradient field is shown in the bottom graph, plotted 
after 500 trials. 
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While the evaluations change towards their optimal values, the merits and probabilities of 
actions are updated according to the learning signal of Eq. 6.3. Figure 6.17 shows the 
difference between the probabilities of the go_west and go_east actions corresponding to the 
100 states visited, again after 5, 50, 500 trials. This difference is about 0 at the beginning of 
the simulations, since the two actions have the same merits and probabilities of being 
selected, and should approach 1 at the end of training, as go_east is the optimal action for all 
the states visited. 

The top and central graphs clearly show that the difference of the probabilities is much 
higher, hence more correct, for the states closer to the goal, while it is low and even negative 
for states far from the goal. This is what the experiment was intended to show. The low 
evaluations for the states far from the goal have two effects: 
• They cause slow learning. 
• They are easily affected by noise caused by wrong generalisation, unreliable sensors, etc., 

so that they generate a wrong learning signal for the actor. 
The probabilities shown in the bottom graph are even worse than the ones of the central 
graph. This is an artefact of the experiment, and is caused by the fact that the evaluations are 
updated according to the optimal policy and not according to the actual action probabilities 
expressed by the actor, as required by the actor-critic algorithm. In fact when the evaluations 
approach their optimal values, the learning signal of Eq. 6.3 becomes 0 and the training of the 
actor stops or continues in the wrong direction. 

What happens if the discount coefficient is increased, e.g. to 0.99, to avoid that states far 
from the goal are close to 0? This has been done in a preliminary experiment, and the result 
has been that the quality of the actions' probabilities associated the last 100 states before the 
goal, improves. However, this does not solve the problem, it only moves it to states more 
distant from the goal. In fact if the discount coefficient is smaller than 1, the evaluations will 
decay exponentially and will get close to 0 for some states distant enough from the goal. On 
the other hand, the discount coefficient cannot be increased too much (near 1) to face the 
problem. In fact the gradient field becomes unstable if this is done: noise plus generalisation 
can cause some evaluations to go over 1, and this in turn can trigger a feedback process that 
causes the evaluations to explode towards big values. This has been observed in several 
experiments (e.g. cf. experiments in s. 11.4.4). 

Further experiments are necessary to support the results presented in this section. In 
particular the results shown suggest that it would be necessary: 
• To eliminate the problem of the evaluations converging to the optimal values. This could 

be done by updating the evaluations on the basis of the probabilities expressed by the 
actor, or by running experiments with Q learning instead of actor-critic methods. 

• To eliminate the advantage of the action probabilities of states close to the goal, caused 
by the fact that the evaluations progressively diffuse from the goal towards the start. This 
could be done by using a trolley that moves from the goal toward the start. 

These experiments with tighter controls will be done in the future. However, the results 
shown here already suggest that a special attention should be paid when discounted 
reinforcement learning is used for problems that involve long time periods (cf. also the results 
of s. 11.4.4). 

6.6 Conclusion 

The chapter has presented a neural implementation of the actor-critic controller. This is at the 
core of all the controllers presented in the next chapters. The novelty of the controller with 
regards to previous reinforcement-learning based neural controllers is the use of a special 
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neural network, the “matcher”, to generate the reward signal when the goal state is 
encountered. In the next chapters we shall see how this network, though simple from a 
computational perspective, is rather important from a theoretical point of view since it allows 
the planning controllers to be “taskable” (cf. section 5.1.2 and 8.4.1). 

The chapter has also investigated the functioning of the evaluator and the actor, collecting 
important data useful for interpreting the results presented in the following chapters. The most 
important aspect investigated has been the generalisation property of the controller that 
originates from its neural structure. Some simulations have shown how this property allows 
the controller to learn quickly and to be robust in the presence of noise. The simulations have 
also shown that in the context of reinforcement learning the well-known aliasing problem is 
particularly impairing when it involves states that are similar to the goal states, because this 
generates local maxima in the evaluation gradient field. A simple pre-processor, that maps the 
input into contrasts, has been adopted that both allows the controller to limit the negative 
effects of the aliasing problem, and is computationally very simple. 

Finally, the chapter has shown some experiments and presented some arguments that 
suggest that discounted reinforcement learning may have some intrinsic limits when dealing 
with long periods of time, at least in the way it is usually implemented (cf. Baldassarre, 2001f, 
and Linaker, 2001, for an investigation possible solutions to this problem). This issue is very 
important for planning because planning expresses its full power, especially when compared 
to reactive behaviour, for tasks that last for many steps. These arguments will be further 
analysed and supported in chapter 11, within the study of abstract planning. 
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7 Reinforcement Learning, Multiple Goals, Modularity 

7.1 Introduction 

Problems Tackled. S. 4.4.1 has illustrated two characteristics of neural networks: the utility 
of their generalisation property and their capacity to isolate structure common to different 
problems. The same section has also suggested that these properties have a cost, namely 
“interference”: when the controller is trained on a single task for a long time, the information 
gathered concerning it disrupts the information previously gathered about other tasks. 

An ideal neural controller should be capable of handling multi-goals tasks, of exploiting 
“structure” common to them (s. 4.4.1), and of avoiding interference at the same time. This 
chapter investigates if and how modularity can be used to this purpose. “Modularity” means 
that the architecture of the controllers studied is made up of clusters of neural units that have 
many connections within them, and relatively fewer connections with other units (cf. 
Calabretta et al., 1998). In particular the chapter investigates whether it is possible to design 
modular neural controllers that are capable of using the same modules for areas of the input-
output space that share common structure, and are capable of using different modules in other 
cases, in order to avoid interference. 

The issue of interference is very important for planning. In fact one of the strengths of 
planning is its capacity to use behaviours as building blocks to pursue different goals (cf. s. 
5.1.2). In this research the “building-block” behaviours considered are the “primitive” actions 
(as “go north”, “go east” etc.). However the capacity of the controllers to learn several 
different behaviours (directed to achieve different goals) is the starting point to scale up to 
forms of planning that use more complex behaviours as building blocks (chapter 11 
investigates a first simple case of neural planning where the building-block behaviours are 
more complex than the primitive-actions). 

 
Overview: A New Task and a New Controller. The previous chapter used a landmark-
navigation task with a single goal. This chapter introduces an instance of “asynchronous 
multi-goal tasks” (cf. also s. 3.1, 5.1 and 6.2). A task of this type requires that the controller 
pursue different goals at different times. This kind of task is introduced because it exacerbates 
the problems of interference, and so it can be used to test if and how much a controller is 
affected by such problem. 

After this task has been defined, a modular actor-critic controller is proposed. This 
architecture uses different kinds of modular networks for the evaluator and the actor. The 
evaluator uses a “mixture of experts network”. The mixture of experts network could not be 
used in a straightforward way to implement the actor, so a novel two-level hierarchical 
architecture has been used for it. The networks of these two levels are trained with the same 
algorithm used to train the actor illustrated in the previous chapter. 

 
What is New and Related Work. Asynchronous multi-goal tasks differ from synchronous 
multi-goal tasks. These are tasks where a controller has to pursue several tasks in parallel by 
assigning proper weights to them. Synchronous multi-goal tasks have been studied under the 
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name of “action selection problems”. See Humphrys (1996) and Tyrrel (1993), for a brief 
review of these problems and some methods proposed to solve them. 

The functioning of the controller presented here, as the controller of the previous chapter, 
is based on the actor-critic model (Barto et al. 1983; cf. s. 13.2.6). As mentioned, the modular 
evaluator implemented here is an application of the “mixture of experts network” (Jacobs at 
al., 1991; cf. s. 13.3.2). The author is not aware of previous applications of this network to 
reinforcement learning problems (Baldassarre, 2001b). The capacity of the mixture of experts 
network to reduce interference was one of the reasons for its introduction (Jacobs et al., 
1991). The modular hierarchical architecture and functioning of the actor used here is novel 
(Baldassarre, 2001e). See also Baldassarre (2000) on the problem of interference that arises 
when multiple goals are pursued with monolithic neural networks. 

The idea that “global” function approximators, such as the feed-forward networks trained 
with the error backpropagation algorithm used here, are badly affected by interference and are 
not suitable for reinforcement learning, has already been investigated elsewhere (e.g. Sutton 
and Whitehead, 1993; Samejima and Omori, 1999). These and other works also suggest that 
“local” function approximators, such as the mixture of experts network used here, are less 
affected by interference. 

Caruana (1995) has presented research that uses feed-forward networks trained with the 
error back-propagation algorithm to learn many different tasks. He has shown that such neural 
networks are capable of transferring skills between tasks sharing common structure. 

Calabretta et al. (1998) have presented an interesting modular neural architecture that 
controls a robot that solves a complex compound task. This work uses genetic algorithms to 
train the weights, so it is not directly comparable with our results. Notwithstanding this, the 
work is relevant for this research since it shows that a modular controller can solve some tasks 
that a monolithic controller cannot. 

 
Chapter's Outline. S. 7.2 introduces an asynchronous multi-goal task based on the 
navigation scenarios introduced in chapter 6. S. 7.3 presents one controller with a 
“monolithic” neural-network architecture, and a second controller with a modular neural-
network architecture. The simulations presented in s. 7.4 show that the monolithic controller 
is very slow in learning because it is affected by interference, while the modular controller has 
a relatively good performance. This section also presents some data about how the modular 
controller's performance is based on emergent functional modularity. Finally s. 7.5 illustrates 
the limits of the controllers, and s. 7.6 draws the conclusions. 

7.2 Scenario of Simulations: An Asynchronous Multi-Goal Task 

The scenario used in this chapter is shown in Figure 7.1. This is the same “complex” scenario 
shown in the previous chapter (cf. s. 6.2 and Figure 6.2). The only difference is the position of 
the goals. The robot used in the simulations has the same properties of the one used in the 
previous chapter (cf. s. 6.2). 

The simulated robot's task is to reach three different goal positions in the arena. At the 
beginning of the simulation the simulated robot is set at the start position (cf. Figure 7.1) and 
has to reach the east goal. Then each time the simulated robot reaches a goal, another goal 
randomly drawn from the three goals is assigned to it until the simulation stops. Since the 
simulated robot’s step size is 0.05, the arena’s size is 1 by 1, and the distance between each 
goal is about 15 steps, the average optimal straight path between two goals is about 10 steps 
long (i.e. (15+15+0)/3) ignoring action noise and problems with the obstacles. 
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Figure 7.1: The scenario used in the simulations. The scenario contains three goals (north-west, east, 
and south-west, marked with a star), the start (white square), five landmarks (black circles), the scope 
of the simulated robot's 50 visual sensors (delimited by the rays), and the robot (white circle at origin 

of rays). 

 

7.3 Architectures and Algorithms: Monolithic and Modular Neural-
Networks 

This section illustrates the details of the architecture of the two controllers used in this 
chapter. The first controller has an evaluator and an actor based on monolithic neural 
networks, while the second has an evaluator and an actor based on modular neural networks. 
 
Monolithic Neural-Network Controller. The architecture of the first controller is shown in 
Figure 7.2. The general structure of the architecture is the same as the architecture of the 
controller presented in chapter 6 (cf. Figure 6.3). The only difference with that architecture is 
that now the evaluator is a three-layer feed-forward network instead of a two-layer feed-
forward network, and the actor is composed of eight (one per action) three-layer feed-forward 
networks instead of eight two-layer feed-forward networks. 

The functioning of the whole controller is the same as the one of chapter 6, with the 
evaluator that learns to evaluate the states and the actor that learns the “merits” (pseudo-
probabilities) of the actions. The only difference is that the error backpropagation algorithm is 
used to train the three-layer networks used here instead of the Widrow-Hoff rule, that is 
applicable to two-layer networks only (cf. s. 13.3.1). 
 
Modular Neural-Network Controller. The architecture of the modular controller is 
presented in Figure 7.3. This graph, together with other similar graphs used in the following 
chapters, uses boxes to indicate networks without depicting the internal details of them. This 
has been done because the compound architectures presented from now on have several 
components so that they would have produced overly complicated graphs if all the details had 
been reported. 

The main architecture and functioning of the modular controller is based on the controller 
presented in chapter 6. The differences are in the architectures of the evaluator and actor that 
are now modular. The actor is a modular network composed of 6 “expert networks” and 1 
“gating network”. Each expert is a two-layer feed-forward neural network that gets the goal 
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and the visual contrasts as input, and has 8 sigmoidal output units that locally encode the 
actions. As in the actor of chapter 6 (cf. Eq. 6.1), the activation mq (“action merit”) of the 
output units is sent to a stochastic selector where a stochastic “winner-take-all competition” 
takes place to select one action. The probability P[.] that a given action aq becomes the 
winning action awin is given by: 

 
 P[aq = awin] = mq  / ∑f mf Eq. 7.1
 
The role of the gating network is to select an expert that, in its turn, selects the actions to 

be executed in the way just shown. The gating network has the same input and architecture as 
the experts, but it has only six sigmoidal output units, each corresponding to one expert, 
instead of eight. The gating network functions in the same way as the experts do, with the 
only difference that its output units and their activation (merits) refer to the six experts instead 
of the eight actions. Similarly to the experts, the gating network uses a stochastic “winner-
take-all competition” to select the “winning” expert. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.2: Components of the monolithic controller. Arrows indicate that a pattern is “copied” from 
one unit/layer to another unit/layer. Dotted arrows indicate the learning signal. For each layer only few 
units have been drawn. In the case of the actor only the networks relative to three actions out of eight 
have been drawn. The total number of units of each layer is indicated in round brackets, except for the 

hidden units whose number varied in different simulations. 

 
The evaluator is a “mixture of experts neural network” composed of 6 experts and 1 

gating network. S. 13.3.2 discusses further details of this architecture, and presents the 
mathematical justification of the training algorithm described below in intuitive terms. Each 
expert is a two-layer feed-forward neural network that gets the goal and the visual contrasts as 
input. With its linear output unit, the evaluator yields the estimate V'π[yt] of the evaluation 
Vπ[yt] of the current contrast pattern yt, defined in the usual way on the basis of the future 
rewards r (cf. s. 13.2.4): 
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 Vπ[yt] = E[γ0 rt+1 +γ1 rt+2 +γ2 rt+3 + …] Eq. 7.2
 

where γ ∈ (0, 1) is the discount factor, set at 0.95 in the simulations, and E[.] is the mean 
operator. The output of the experts is weighted and summed in order to compute V'π[yt]: 
 

 V'π[yt] = Σk[vk gk] Eq. 7.3
 
where vk is the output of the expert k, and the weight gk is computed as the “softmax 
activation function” of the output units' activation ok of the gating network: 
 

 gk = exp[ok]/Σf[exp[of]] Eq. 7.4
 

Notice that Σk gk = 1. 
As usual the TD-critic is a neural implementation of the computation of the “temporal-

difference error” et (“learning signal” in Figure 7.3) defined as: 
 

 et = (rt+1 + γ V'π[yt+1]) - V'π[yt] Eq. 7.5
 

Now it is also possible to compute the specific temporal-difference error ekt for each 
expert: 
 

 ekt = (rt+1 + γ V'π[yt+1]) - vk[yt] Eq. 7.6
 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.3: The modular controller. Arcs indicate forward connections that “copy” a pattern from one 
layer to another. Dashed arrays indicate the learning signal used to update the weights of the evaluator 

and the actor. 

 
Each evaluator's expert is trained on the basis of its temporal-difference error. This 

assumes the role of error in a supervised learning algorithm. In particular the weights of the 
experts are updated so that the estimate vk[yt] yielded by each of them tends to be closer to the 
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target value (rt+1+ γ V'π[yt+1]). This target is a more precise estimate of Vπ[yt] because it is 
expressed at time t+1 on the basis of the observed rt+1 and the new estimate V'π[yt+1]. The 
formula (a modified Widrow-Hoff rule, cf. Widrow and Hoff, 1960, and s. 13.3.1) used to 
update the weights of each expert is: 

 
 ∆wkj = η ekt yj hk Eq. 7.7
 

where η is a learning rate, wkj is a weight of the expert k, and yj is the activation of the 
evaluator's input units at time t. hk (absent in the Widrow-Hoff rule) is the “updated” 
contribution of the expert to the global answer V'π[yt], and is defined as (cf. s. 13.3.2): 
 

 hk = gk ck / Σf[gf cf] Eq. 7.8
 
where ck is defined as: 
 

 ck = exp[-0.5 ekt
2] Eq. 7.9

 
and intuitively can be interpreted as a measure of the “correctness” of the expert k. Cf. s. 
13.3.2 for a more rigorous (but less intuitive) interpretation of this measure. Notice that Σk hk 
= 1. 

The weights zkj of the evaluator's gating network are updated to increase the contributions 
gk (to the production of the evaluation) of the experts that has produced a low error: 

 
 ∆zkj = ξ (hk - gk) yj Eq. 7.10
 

where ξ is a learning rate. 
The actor's experts are trained according to the TD-critic's learning signal et. The 

updating of the actions' merit of the selected expert (and only this) is done by updating the 
weights of the neural unit corresponding to the selected action awin (and only this) as follows: 

 
 ∆wwin j = ζ et (4 mwin (1 - mwin)) yj Eq. 7.11
 

where ζ is a learning rate, and (4 mwin (1 - mwin)) is the derivative of the (sigmoidal) transfer 
function multiplied by 4 to homogenise the size of the learning rates of the actor and the 
(linear) evaluator (in fact the maximum of that derivative of the transfer function is 0.25 for 
the actor, and 1 for the evaluator). 

The weights of the actor's gating network corresponding to the winning expert are 
updated through Eq. 7.11, where the winning expert is considered instead of the winning 
action. At the beginning of the simulation the weights of the evaluator and actor are 
randomised in the interval [-0.001, +0.001]. 

7.4 Results and Interpretation 

As mentioned, the task of the simulated robot was to reach one of the three goal positions 
shown in Figure 7.1. When a goal was reached a new one (randomly chosen between the three 
goals) was assigned to the simulated robot and the simulated robot had to reach it from its 
current position. Two groups of simulations have been run by using this scenario. The first 
group of simulations has used the controller with the monolithic architecture, and the second 
group has used the controller with the modular architecture. The performance has been 
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measured in terms of number of steps taken to achieve a goal, averaged over the last 100 
goals reached (at the beginning, with less than 100 goals reached, a simple average has been 
used). 

A parameter search has been done in order to optimise the number of hidden units of the 
monolithic controller. The results have shown that with 3 hidden units the controller is not 
capable of solving the task. With 5 and 10 hidden units the controller is capable of solving the 
task and shows an equivalent performance in the two cases. The results shown below refer to 
the case with 10 hidden units. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.4: Top: the performance of the two controllers (y-axis) measured as number of steps per goal, 
averaged over the last 100 successes, and averaged over 10 runs of the two simulations repeated with 
different random seeds. The performance has been plotted against the cycles (x-axis). The thin curve 
refers to the “monolithic” controller, while the bold curve refers to the modular controller. Bottom: 

graphs showing again the learning curve of the monolithic controller and the modular controller, but 
also these curves plus and minus their respective standard deviations for the ten random seeds. In the 

case of the monolithic controller 10 hidden units and a learning rate of 0.1 have been used for the 
learning networks of both for evaluator and actor. In the case of the modular controller a learning rate 
of 0.02 has been used for all the learning networks of the controller, with the exception of the gating 

network for which a learning rate of 0.2 has been used. 

 
A parameter search has also been done in order to optimise the learning rates of the 

evaluator and actor of the controllers. With one exception (see below) the same learning rate 
value has been used both for the evaluator and actor. In the case of the monolithic controller, 
learning rates set at 0.5 cause the evaluations to explode towards positive values. Learning 
rates set at 0.2 lead the simulated robot to get stuck in areas of the gradient field with local 
maxima for long times before the performance (measured as number of steps per goal, see 
below), converges to about 20 steps per goal. The data reported below refer to simulations run 

-500

0

500

1000

1500

2000

2500

3000

3500

4000

0 1000000 2000000 3000000 4000000 5000000 6000000
0

200

400

600

800

1000

1200

1400

1600

0 500000 1000000 1500000 2000000

0

500

1000

1500

2000

2500

0 1000000 2000000 3000000 4000000 5000000 6000000



 

 

 

with learning rates set at 0.1, for which the performance converges quite smoothly (but not yet 
completely, see below) to good levels. 

In the case of the modular controller, the learning rates set at 0.05 lead to quick learning, 
with a performance of about 20 steps per goal after only 200,000 cycles of the simulation. 
However, the evaluations are very unstable, i.e. they continue to change at each time step, and 
with some random seeds the simulated robot gets stuck in local minima of the gradient field. 
For this reason the data reported below refer to simulations run with learning rates set at 0.02, 
for which the performance converges smoothly and without problems to good levels. 
Unfortunately, and this is a drawback of the modular controller, to obtain this result the 
learning rate of the gating network of the evaluator has been set at a value different from the 
other learning rates, namely 0.2. In fact, without this learning rate the specialisation of the 
evaluator (see below) failed for some random seeds, in the sense that the evaluator used one 
expert for two goals and the performance of the controller was disrupted. 

Figure 7.4 reports the performance of the two controllers with the settings just described. 
The performance is measured in terms of number of steps taken to achieve a goal, averaged 
over the last 100 successes, and plotted against the cumulated cycles of the simulation. The 
graph shows the average for 10 repetitions, with different random seeds, of the two 
simulations. It can be seen that in the case of the monolithic controller the performance 
improves from about 1,000 to about 20 after 5,000,000 steps. In the case of the modular 
controller the performance improves from about 1,000 to about 20 after 1,000,000 steps. 
Recall that the optimal performance, ignoring noise and obstacles, would be about 10 steps, so 
the performance can be considered satisfactory. Moreover, the variance of the monolithic 
controller is quite large since the controller sometimes still got stuck in areas with a local 
maximum of the evaluation gradient field with the learning rates used, 0.1. With even lower 
learning rates, 0.05, the variance was smaller and the curve was smoother, but the 
performance converged after about 9,000,000 cycles. 
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modular controller start to specialise in different areas of the input-goal-output space, 
pursuing one goal has little disruptive effects on the skill (weights) learned for the other goals. 

Figure 7.5 presents some data about the “emergent functional modularity”(cf. Calabretta 
et al., 1998), i.e. the specialisation of the experts of the evaluator, of one of the 10 runs with 
the modular controller. The other random seeds have produced results with analogous quality. 
The graph shows the evaluation gradient field for the three goals when the performance has 
converged. The evaluator deals with each goal by using a different expert. In particular for 
each goal and in each possible position of the arena, the “weight” of one particular expert in 
determining the evaluation (cf. Eq. 7.4) is over 0.99. This probably means that different 
positions in the arena need to be evaluated in a different way for the three goals, so that the 
algorithm uses a different expert for each goal to avoid interference. This also means that the 
connections from the (contrast) input pattern to the evaluator's gating network are redundant: 
the information about the goal to pursue is sufficient to select an expert. Notice that the 
controller is capable of not using some of the resources available (experts 1, 3, 4). These 
resources could be used for other goals. 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.6: Data about the emergent functional modularity of the actor of the modular controller (1 
random seed out of 10). The first row of graphs reports the ordering number of the actor's expert with 

the highest probability of being selected, for each of 20×20 positions on the arena. The grid of 
numbers can be overlapped to the arena to find the corresponding positions. A number 0 indicates a 

position occupied by a landmark. The second row of graphs reports the histograms that summarise the 
frequencies of use of the experts illustrated in the first row of graphs. 

 
With regards to the actor, Figure 7.6 shows that the specialisation of the experts is much 

less pronounced. In particular the graphs in the first row show that while pursuing a particular 
goal the actor uses different experts in different position of the arena. The histograms of the 
second row summarise the frequency of use of the different experts for the different goals. 
Clearly the actor tends to use different experts when dealing with different goals. However 
now, unlike what happened for the evaluator, the visual input plays an important role and the 
actor uses different experts in different positions of the arena. Moreover (e.g. see expert 1 for 
goal 1 and 3) the same experts are used for different goals. Notice that in the actor, as in the 
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case of the evaluator, there is a partial use of the resources available (marginal use of experts 
3, 4, and 5). 

Further investigation should verify if the different use of the experts of the evaluator and 
actor are caused by the differences in the role they play (learning of evaluations and learning 
of the policy) or if it is caused by the difference between the architectures and algorithms 
employed for them. 

7.5 Limitations of the Controllers 

The chapter has shown that the monolithic controller learns very slowly when dealing with an 
asynchronous multi-goal task. A modular controller has shown a better performance. 
Unluckily, the modular controller has limitations, too. As mentioned it needs a fine-tuning of 
the leaning rates of the evaluator's gating network, otherwise the specialisation of the experts 
can fail, in the sense that the same expert is used for more than one goal, and this can reduce 
the performance of the controller. These problems are probably caused by the interference 
between the experts, in turn caused by the gating network of the mixture of experts network 
used here. This is based on a soft-max function. See Ramamurti and Ghosh (1997) on this 
problem, and on the proposal of a gating network, based on local function approximation, that 
is not affected by these problems. 

Another limitation is the “strong” functional modularity of the evaluator that does not 
allow the controller to easily scale up to many goals. In fact the number of experts available to 
the evaluator fixes the maximum number of goals that can be pursued. If a further goal is 
added over this limit, the performance abruptly deteriorates, while a “graceful degradation” 
would be desirable. 

7.6 Conclusion 

This chapter has introduced a task where a simulated robot has to pursue several goals at 
different times. These kinds of tasks are relevant if one wants to test if a neural controller is 
scalable to more complex scenarios and is capable of exploiting the full potentiality of neural 
networks in terms of their capacity to discover common structure underlying different 
goals/problems and to avoid interference. Some experiments have shown how monolithic 
networks with hidden units, even if potentially capable of discovering common structure, are 
affected by problems of interference that slow learning. A controller based on a modular 
architecture has been designed and implemented to overcome this problem. The simulations 
have shown that this controller is capable of limiting the effects of interference by exploiting 
emergent functional modularity. 

This chapter concludes with a comment on the performance of the mixture of experts 
network of the evaluator. The simulations suggest that this architecture may be quite rigid in 
its capacity to discover underlying structure and avoid interference. In fact it either uses 
different experts for the different goals, or it uses the same expert for more than one goal. 
Perhaps, in the task considered using different experts for different goals is the correct thing 
to do. Alternatively it is possible that the mixture of experts network is actually rigid, and not 
capable of discovering underlying structure between different goals as it should do. For 
example, the behaviour of the architecture and algorithms of the actor that generate a fuzzy 
specialisation of the experts might be considered an indication of higher flexibility. These 
issues need to be further investigated. 
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8 The Neural Forward Planner 

8.1 Introduction: Taskability, Planning and Acting, Focussing 

Problems Tackled. This chapter deals with the problems of taskability of the Dyna-PI 
architecture, with the problem of focussing planning around relevant states, and with the 
problem of interleaving acting, planning and re-planning. 

We have seen in s. 5.1.4 that the Dyna-PI architecture is not taskable in a strong sense. In 
s. 5.1.3 a double test has been given to decide operationally if a system is taskable. A system 
is taskable if: (a) it works on the basis of the goal information only; (b) the first time that it 
reaches the goal it can reach it with an efficiency superior to the efficiency of the 
corresponding reactive system (if there is one) or the random solution. Here a new planning 
controller will be presented: the “neural forward planner” (or simply “forward planner”). This 
controller is inspired by the Dyna-PI architecture, but contrary to this, it passes the two tests 
of taskability. 

S. 5.3 has explained why it is better to use “partial policies” instead of “full policies” 
defined for all states. S. 3.4 has argued that “trajectory sampling” is a way to focus planning 
on relevant states. By proposing the forward planner, this chapter aims at specifying and 
implementing these ideas. 

S. 2.4.4 has suggested that the best strategy between the two extremes of universal 
planning (full policy) and pure re-planning is to have a partial policy that contemplates what 
to do in the situations most likely to occur, and to do re-planning when things are too different 
from expectations. The neural planner proposed here specifies and implements this strategy. 
In fact on one hand it prepares a partial policy focussed on the states around the current state, 
the goal state, and the states between these two, and on the other hand it triggers re-planning 
when the simulated robot encounters “unexpected” states during action execution. 

 
Overview of the Controller. The planning controller presented in this chapter is built by 
adding some new components and algorithms to the controller presented in chapter 6, that is 
based on the actor-critic methods. The idea exploited here is the one at the basis of the Dyna-
PI architecture (cf. s. 3.3): the evaluator and actor are trained through experience generated 
through the model of the environment instead of real experience. The components added to 
the basic actor-critic model to obtain the planning model are the following ones: 
• Predictor: a neural network that implements the model of the environment. 
• Matcher: a neural network that is capable of deciding if the goal has been achieved or not 

(either in the environment or in the simulated experience) and to generate a reward signal 
accordingly. 

• Action-planning controller: an algorithm that determines when to act and when to plan, 
administers the flow of information between the different neural components that make 
up the whole system, and directs the generation of simulated experience during planning. 

Incidentally, notice that a fourth important component, that is not present in the model, would 
be needed to have a fully autonomous robot. This component would have the function of 
memorising the goals and of recalling them at the appropriate moment. For example if the 
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robot were engaged in a navigation task this component could allow the robot to memorise 
“snapshot images” of relevant locations in space, e.g. locations where the robot has found 
some resources important for its activity. At a later stage, when these resources are needed, 
the robot should be capable of retrieving the image of the location where the resources are, so 
that this position would become the goal position that it would try to reach. Notice that this is 
a quite sophisticated function, difficult to implement. 

When planning, the controller simulates experiences based on “simulated walks” of the 
kind: “sensory input → action → prediction of new sensory input → action…”. The planning 
process is a form of “forward planning”. In fact each simulated walk starts with the sensory 
input corresponding to the current state and continues with the predicted input patterns 
generated in a sequence. Each simulated walk terminates either when the goal is achieved 
(within the simulated experience), or when the length of the simulated walk becomes longer 
than a certain maximum length. This prevents the planning process from getting stuck in 
unproductive loops and dead ends, and also focuses the search around the current state. As we 
shall see, this maximum length is set at 1 when the planning process starts, and then is 
increased by 1 unit each time that the simulated walk fails to reach the goal. This guarantees 
that the search is progressively extended to states more distant from the current state. 

It is important to briefly discuss the fact that the predictor's training has been 
accomplished before the tests (incidentally, this is also done by the majority of works that 
have implemented neural planning on the basis of the activation diffusion principle, cf. s. 
4.5.1, and the planning systems based on gradient descent methods, cf. s. 4.5.2). This choice 
has been made for two reasons. The first is that in this way it has been possible to show that 
the forward planner is capable of implementing taskable planning. In fact it can reach any 
goal assigned to it on the basis of the information contained in the predictor, without the need 
to train again the model of the environment. The second reason is that model updating carried 
out while acting would introduce other complex problems out of the scope of this research. 
 
What is New and Related Work. The previous section has already highlighted some aspects 
of the controller that are new (Baldassarre, 2001c). As mentioned the reactive components of 
the controller presented in this chapter, are largely based on the actor-critic model 
implemented with neural networks (Barto and Sutton, 1998) and analysed in chapter 6. The 
idea of implementing planning as a form of learning within a model of the environment is 
from Sutton (1990, “Dyna-PI” models, cf. s. 3.3; cf. also Barto et al., 1995, on trial-based 
real-time asynchronous dynamic programming applied to path finding problems, cf. s. 
13.2.11). It is important to stress that previous work using Dyna-PI architectures (e.g. Sutton 
1990; Lin, 1992) has used it as a way to speed up learning, not to implement genuine taskable 
planning. The reason was that a device like the matcher was needed to implement planning. 
The idea of the matcher is new, but it has been inspired by the idea of “goal test” used in 
problem solving and planning (cf. s. 2.1 and 2.3). The idea of generating simulated 
experiences on the basis of the current policy, called “trajectory sampling”, was investigated 
by Barto et al. (1995) and Sutton and Barto (1998, p. 247; cf. s. 3.4 for a review). The idea of 
increasing the depth of the path generated during planning resembles an iterative deepening 
search (Korf, 1985a, cf. s. 13.1.1), but it is new because it has been developed for the 
application to problems with stochastic actions' effects. The planning algorithm controlling 
the flow of information between the components of the model, and the use of the predictor to 
generate “simulated walks”, are new. The idea of implementing the predictor (model of the 
environment) with a feed-forward neural network trained with experience has already been 
applied by Lin (1992) and Nolfi and Tani (1999) (see other examples in s. 4.5.2). Notice that 
all these works use deterministic neural networks to implement a model of an environment 
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that is actually stochastic. This simplification is also used here (see below). An alternative 
approach would have been to use stochastic networks, such as the feed-forward stochastic 
networks proposed by Neal (1995; 1996). This idea has not been tested here. As we shall see, 
the predictor is trained while the simulated robot navigates randomly in the environment. A 
random navigation has been used to mimic the way an unsophisticated autonomous robot 
would navigate in the absence of any previous knowledge. More sophisticated ways of 
exploring the environment to improve model building have been proposed (e.g. cf. Duckett 
and Nehmzow, 1999; Schmidhuber, 1999). These are not tested here. The idea of using 
“expert” networks for the predictor, each specialised to predict the consequences of a specific 
action, has been used in Lin and Mitchell (1992). 

 
Chapter's Outline. S. 8.2 presents the task used to test the controller. S. 8.3 presents the 
architecture of the system and in particular the planning components and the algorithm that 
manages planning and decides when to plan and to act. S. 8.4.1 shows that the neural planner 
presented here is taskable. S. 8.4.2 shows how information gained with simulated and real 
experience merges nicely within the policy. S. 8.4.3 analyses the details of how the predictor 
works. Finally s. 8.5 highlights the drawback of the controller and s. 8.6 draws the 
conclusions. 

8.2 Scenario of the Simulations 

The simulated scenario and robot used to test the controller presented later are the ones 
illustrated in s. 6.2. For convenience, Figure 8.1 reports the scenario and the goals that the 
simulated robot has to pursue. 

 
 

 

 

 

 

 

 

 

Figure 8.1: Left: the simulations' scenario containing the three goals (stars), five landmarks (black 
circles), the scope of the simulated robot's 50 visual sensors (delimited by the rays), the simulated 

robot at the start position (white circle). Right, in order from the top: the activation of the simulated 
robot's sensors at the start, the corresponding contrasts, the three goals (as contrasts relative to the 

images viewed from the goal positions). 
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8.3 Architectures and Algorithms: Reactive and Planning Components 

This section will first analyse the differences between the reactive components of the 
controller presented here, and those of the controllers presented in the previous chapters. Then 
it will analyse the components added to them to obtain the neural forward planner. 

8.3.1 The Reactive Components of the Architecture 

Figure 8.2 shows both the reinforcement learning and the planning components of the 
simulated robot's neural controller. A description of the reinforcement-learning components is 
now given. This part of the model is the same as the one reported in s. 6.3, and in particular in 
Figure 6.3 (Figure 8.2 represents each neural network as a box that does not shows the 
internal details about the single units and connections as Figure 8.2 does). 
 

 

 

 

 

 

 

 

 

Figure 8.2: The controller of the simulated robot. Networks with a bold and thin border implement 
reinforcement learning and planning respectively. Arcs and arrows respectively indicate forward and 
backward connections that “copy” a pattern from one layer to another. The four and five spike stars 

respectively indicate the channels set open or close by the action-planning controller when acting (vice 
versa when planning). Dashed arrays indicate the learning signal used to update the weights of the 

evaluator and actor. 

 
As previously, the actor selects the actions in a stochastic fashion, and the evaluator 

evaluates the states of the world in terms of expected future rewards, on the basis of the 
current actor's action-selection policy. The evaluator improves the quality of the evaluations 
by experiencing the rewards through a supervised learning algorithm. The actor improves the 
action-selection policy by increasing the probabilities of those actions that bring it to states 
with an evaluation higher than the one expected by the critic. So, as previously, the controller 
is perfectly capable of learning by a trial-and-error process. However now, as we shall see 
below, when the controller is planning the same evaluator and actor are also trained through 
pseudo-experience generated by using the “predictor”. When this happens, the evaluator and 
actor function in the same way as they do when they are trained through real experience. They 
treat the two kinds of experience in identical way. If the model of the world is accurate 
enough, the effect of training with simulated experience while planning is that the 
performance of the controller in the world improves. 
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8.3.2 The Planning Components of the Architecture 

Now the components added to the reactive-learning model to obtain the planning controller 
are explained. The “predictor”, i.e. the controller's model of the environment, is a set of 8 
feed-forward two-layer networks (“experts”) with sigmoidal output units, each corresponding 
to one action. Each expert takes yt as input, and is specialised to predict the following sensors' 
activation xt+1 if the action corresponding to it is executed. To this purpose the output of each 
sigmoidal unit of the expert selected is set at 0 if below 0.5, and at 1 if above, in order to 
obtain a binary pattern. A hand-designed algorithm chooses the expert corresponding to the 
selected action to yield the output of the predictor itself. This algorithm could be easily 
implemented with neural networks: the activation of the selected action's unit could be used to 
inhibit the activation of all the units of the experts different from the expert corresponding to 
the selected action. However this would not produce any substantial insight. 

The experts are trained while the simulated robot navigates randomly in the environment 
for 200,000 cycles. This training brings the quadratic error per unit to about 0.24 (the 
“quadratic error” is computed as the square root of the average of the squared error per unit). 
The training is done before the main simulations illustrated later, and then the experts are used 
unchanged for all the simulations. At each cycle the contrast pattern yt and the input pattern 
xt+1 observed after the execution of one action, are respectively used as input and teaching 
output to train the expert corresponding to the action with a Widow-Hoff rule (Widow and 
Hoff, 1960; cf. s. 13.3.1). Notice that, because of its architecture, the predictor yields 
deterministic predictions that tend to be the average of the xt+1 observed after each yt. This is 
clearly a simplification since a correct model of the environment that is stochastic should 
yield stochastic predictions. 

It is important to explain why one expert for each action has been used instead of one 
monolithic neural network with current state and current action as input and predicted next 
input as output. At the beginning of the research, some exploratory simulations have been run 
with the monolithic network (a three-layer feed-forward neural network trained with the error 
backpropagation algorithm) and the results have been poor. They can be summarised as 
follows. The behaviour of the predictor has the strong tendency to get stuck in a behavioural 
local minimum for which the current state of the input is repeated as output. The reason is 
that, with the sizes of the simulated robot's movement used to implement the actions (e.g. the 
“go_to_north” action), the next input is identical to the current input with the exception of few 
bits. These few bits are not always the same even for the same action (selected at the same 
state) as noise affects the consequences of it. As a result, the predictor tends to treat the bits 
common to the current input and the next input as the actual input-output pattern association 
to learn, and the differences between them, caused by the different actions selected, as noise. 
The use of one expert for each action greatly facilitates the training of the predictor as the 
different bits between each “current input” and its next input tends to be consistent in time, 
since the same action is always selected in correspondence to a given expert (cf. Lin and 
Mitchell, 1992, on the “one action one network principle” according to which in 
reinforcement learning it is usually advantageous to use one neural network for each action). 

The controller can be either in planning or acting mode. The action-planning controller is 
a hand-designed algorithm whose pseudo-code is showed in Figure 8.3. The action-planning 
controller decides when planning and when acting and directs the flows of information 
between the different networks of the architecture. Here, first an overview of the functioning 
of the action-planning controller is given, and then a detailed explanation of it is presented. 
The action-planning controller decides the controller's mode on the basis of its “confidence”. 
The confidence is defined as the highest of the actions' probabilities measured at the position 
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currently occupied by the simulated robot. If the confidence is above a certain threshold the 
controller acts in the world and the predictor is not used. 

 
01 IF(NewGoalHasBeenAssigned) 
02   MaxStepsPlan := 1 
03   ConfThresh := MaxConfThresh 
04   StepPlan := 0 
05   InputFromWorld := TRUE 
06 IF(InputFromWorld) 
07   System gets input x

t
 (y

t
) from the robot’s sensors 

08   Actor gets y
t
 and gives m

t 

09   Confidence is computed on the basis of m
t
 

10   IF(Confidence < ConfThresh) 
11     Planning := TRUE 
12   ELSE 
13     Planning := FALSE 
14     ConfThresh := MIN(MaxConfThresh, ConfThresh + Gain) 
15 IF(Planning) 
16   StepPlan := StepPlan + 1 
17   ConfThresh := ConfThresh - Decay 
18   IF(InputFromWorld = FALSE) 
19     System uses predictor’s output y

t
 as input 

20   InputFromWorld := FALSE 
21   IF(GoalReached OR StepPlan = MaxStepsPlan) 
22     IF(StepPlan = MaxStepsPlan) 
23       MaxStepsPlan := MaxStepsPlan + 1 
24     ELSE 
25       MaxStepsPlan := MIN(MaxStepsPlan, StepPlan * 2) 
26     InputFromWorld := TRUE 
27     StepPlan := 0 
28 Evaluator gets y

t
 and gives V'π[y

t
]
 

29 Actor gets y
t
 and gives m

t
 

30 Stochastic selector gets m
t
 and gives a

t
 

31 Matcher gets y
g
, y

t
 and gives r

t
 

32 TD-Critic gets V'π[y
t-1
], V'π[y

t
], r

t
 and gives e

t-1
 

33 Evaluator gets y
t-1
, e

t-1
 and learns 

34 Actor gets y
t-1
, m

t-1
, a

t-1
, e

t-1
 and learns 

35 IF(Planning) 
36   Predictor gets y

t
, a

t
 and gives x

t+1
 (y

t+1
) 

37 ELSE 
38   System executes a

t
 in the environment 

Figure 8.3: Pseudo-code of the action-planning controller. This code is executed at each cycle after the 
activation of the actor. “:=“ is the assignment operator. In the simulations these parameter settings 

have been used: Decay = 0.00001,  Gain = 0.01, MaxConfThresh = 0.15. 

 
If the confidence is below the threshold, the action-planning controller disconnects the 

robot from the world, in the sense that it generates simulated experience by using the 
predictor and the matcher to simulate experience (see Figure 8.4). In particular the action-
planning controller uses the predictor to generate several “simulated walks”, i.e. chains of 
predictions (images). Each simulated walk starts from the image that corresponds to the 
position occupied in the environment. Simulated walks tend to be different since the actor 
selects the actions stochastically. Simulated walks get gradually longer if the goal is not 
encountered, otherwise they tend to get shorter (see details below). While planning the 
confidence threshold decreases. This prevents the robot from getting stuck in places in which 
the controller is not capable of becoming “confident” enough to start to move. For example, in 
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some simulations where the threshold was kept fixed, the simulated robot got stuck between 
the arena's border and the upper-left obstacle. While acting, the threshold increases again and 
reaches the maximum level without exceeding it. This guarantees that the robot tends to move 
only when the confidence is above the maximum level of the threshold. If the threshold could 
only decrease, the simulated robot would tend not to plan anymore. When the simulated walks 
are generated, the actor and the critic are trained as if the robot were acting in the 
environment. This allows the evaluator to improve its evaluating capacity and the actor to 
become capable of reaching the goal when the robot starts to act. 

 
 

 

 

 

 

 

 

 

 

 

 

Figure 8.4: This sequence of graphs gives a general idea of the nature of the simulated walks (thin 
broken lines) generated by the action-planning controller from the current position. The simulated 

walks get longer until they start to encounter the goal. When this happens, their length tends to 
stabilise. Initially the simulated walks are directed in every direction, while after some time they 

become oriented from the start to the goal due to the training of the actor and critic. When the 
confidence measured in correspondence to the image of the position currently occupied by the robot 

reaches the threshold, the robot starts to act (not shown in the graphs). 

 
Now the pseudo-code illustrated in Figure 8.3 is explained in detail. At the beginning of 

the simulation, when a new goal is assigned to the simulated robot, the variable 
NewGoalHasBeenAssigned is TRUE, and the algorithm does some variable settings (line 
1 to 5). The whole algorithm is executed at each cycle of the simulation. This implies the 
execution of either one cycle of action or one cycle of planning depending on the system’s 
mode (planning or acting mode). The mode (variable Planning) is decided each time the 
system receives an input from the world (line 6 and 7) on the basis of the system’s 
“confidence” (line 8 to 13). The confidence is defined as the highest of the actions’ 
probabilities measured at the position currently occupied by the simulated robot. If the 
confidence is above a certain threshold the system acts in the world and the predictor is not 
used (line 38). If the confidence is below the threshold, the action-planning controller 
“disconnects” the robot from the world (line 10, 11, 15 and 20), in the sense that it starts to 
generate simulated experience by using the predictor and the matcher (in line 36 the predictor 
produces one of the predictions that make up the chain of predictions, and in line 31 the 
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matcher checks if the chain encounters the goal). Each chain of predictions starts from the 
image that corresponds to the position currently occupied by the simulated robot. In fact when 
the variable Planning is set at true (line 11), xt and yt come from the simulated robot’s 
sensors (line 6, 7). Notice that chains tend to be different since the system selects actions 
stochastically (line 29 and 30). Prediction chains get gradually longer if the goal is not 
encountered (line 2, 22 and 23), otherwise they tend to get shorter (line 25). While planning, 
the confidence threshold decreases (line 17). This prevents the robot from getting stuck in 
places in which the system is incapable of becoming “confident” enough to start to move (for 
example, without this mechanism the simulated robot got stuck between the arena’s border 
and the northwest landmark). While acting, the threshold increases again and reaches the 
maximum level without exceeding it (line 14). This guarantees that the simulated robot tends 
to move only when the confidence is above the maximum level of the threshold. In the 
simulations the parameters of the algorithm are set as follows: Decay = 0.000001, Gain = 
0.01, MaxConfThresh = 0.15. Each time a chain of prediction is terminated (either because 
the goal has been encountered or because it has reached a maximum length, line 21) the 
system “connects” again to the sensors and effectors (line 26, 6 and 7), updates the mode (line 
8 to 13), and starts to act or to generate another chain of predictions. While the simulated 
walks are generated, the actor and the evaluator are trained with reinforcement learning as if 
the robot were acting in the world (line 28 to 34). This allows the evaluator to improve its 
evaluating capacity and the actor to shape the action probabilities. When the system stops 
planning and acts in the world (line 10, 13 and 38) it reaches the goal following a path that 
tends to be straight. 

8.4 Results and Interpretation 

8.4.1 Taskable Planning vs. Reactive Behaviour 

The first two simulations have been run to test the taskability of the planning controller. This 
has been done by comparing the performance of the planning controller with the performance 
of the controller with reactive components only. During a simulation the simulated robot is set 
at the start, and its task is to reach the northwest goal. Each time the simulated robot reaches 
the goal it is set at another randomly-drawn position of the arena. This is done for 50,000 
cycles. Then the simulated robot is set again at the start and is assigned the northeast goal, 
pursued for 50,000 cycles with the same modalities (random start after each success). The 
same is done for the southwest goal. Each time a new goal is assigned to the simulated robot, 
the weights of the evaluator and actor are randomised in the interval [-0.001, +0.001] so they 
can be used for the new goal. 

Figure 8.5 reports the results of these simulations (averaged over 10 random seeds). For 
both the reactive and planning controllers the number of actions taken to reach the goal has 
been measured and plotted against the cumulated simulation cycles (this measure has been 
sampled every 100 cycles, and then smoothed with a 10-step moving average). Each cycle 
reported in the graph implies the execution of one action and eventually, if the controller is 
planning, several planning cycles. In the case of planning the number of planning cycles per 
action has also been measured and plotted in the graphs. 

Several facts emerge from these simulations. When a new goal is assigned to the reactive 
controller, it reaches it in about 2000 steps on average (this approximately corresponds to the 
performance of a controller yielding a random walk). After repeated trials the reactive 
controller learns to reach the target in fewer steps, about 40 on the average, from any position 
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of the arena (the optimal path, not considering noise and obstacles, is about 10-15 steps long 
on the average). This same pattern is repeated for the three goals assigned to the reactive 
controller in a sequence. The standard deviation of the performance over the 10 simulations 
run with different random seeds is quite high (see graph). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.5: Top: Performance (y-axis: sampled every 100 cycles, and then smoothed with a 10-step 
moving average) for the three goals of the learning controller and planning controller, against the 

cumulated cycles (x-axis). “action” = steps per success; “action (plan)” = steps per success; “plan” = 
planning cycles per success. Each plot is an average over 10 simulations run with different random 

seeds. Bottom: average performance, average performance minus the standard deviation and average 
performance plus the standard deviation of the learning controller (left) and planning controller (right) 

for the northwest goal. 

 
When a new goal is assigned to the planning controller, it reaches it in about 200 steps 

from the very first time it pursues the goal. This result is achieved through a considerable 
amount of planning processing: the planning cycles that the controller spends planning before 
reaching the goal the first time (averaged over 10 random seeds) are 62,004 40,116 and 
17,840 for the northwest, northeast, southwest goals respectively. During this planning 
activity the skills of the evaluator and actor improve so that when the controller decides to act 
in the world it can achieve the goal with a performance superior to the performance of the 
reactive controller (random walk). If the confidence threshold is set at a higher value, 0.25, 
the performance of the planning controller is even better: it takes about 50 steps to reach the 
goal (see Figure 8.6). The standard deviation of the performance over the 10 simulations run 
with different random seeds is quite low (see Figure 8.5). This implies that planning not only 
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improves the performance on the average, but also drastically improves the consistency of 
success. 

The number of planning cycles required by the north-west goal for the first success 
(62,004) is high in comparison to the cycles required by the other two goals because the 
north-west goal is more distant from the start. The difference of planning cycles between the 
other two goals (40,116 and 17,840) is probably caused by the configuration of the 
landmarks/obstacles and the functioning of the model of the environment for different areas of 
the environment. The fact that, for all the three goals, so many planning cycles are required is 
discussed in s. 8.5. 

 
 

 

 

 

 

 

 

 

Figure 8.6: Left: Positions occupied by the simulated robot the first time that it reaches the northeast 
goal by reinforcement learning. Right: positions occupied by the simulated robot the first time that it 
reaches the northeast goal by planning. In this particular experiment the confidence threshold was set 

at a higher value than in the other experiments (0.25) to stress the fact that since the first time the robot 
reaches the goal it follows a quite efficient and straight path. 

 
The difference of the performance of the reactive controller and planning controllers is 

particularly relevant because it shows that the planning controller is taskable. If fact: (a) it 
reaches the goal only on the basis of the information about the goal (plus the information 
stored in the predictor, i.e. the model of the world); (b) it is more efficient than the 
corresponding reactive controller from the first time the goal is pursued (cf. s. 5.1). 

It is interesting to frame the results in terms of the formalism introduced in s. 3.1. The 
planning controller is capable of building the mapping S × A → [0, 1] relative to the 
particular goal pursued, without reaching the goal. Moreover the controller solves the more 
complex mapping S × A × Sg → [0, 1] dynamically, i.e. for the particular goal assigned, by 
using the small memory capacity of the evaluator and actor's weights. On the other hand, the 
reactive controller can solve the S × A → [0, 1] mapping problem only at the cost of repeated 
experience of the goal itself. This is also true when the reactive controller has to solve the S × 
A × Sg → [0, 1] mapping problem (chapter 7 has shown how a modular architecture can 
improve the learning speed of the system). 

Some caveats are needed to qualify these results. First, the planning controller has storage 
capacity (weights of the predictor) that could be used to increase the storage capacity of the 
reactive controller's actor and critic. Second, the acquisition of a good model of the 
environment requires experience that could be used to learn to reach specific goals. 
Notwithstanding these caveats, an important fact remains true: the planning controller is 
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capable of storing information in the predictor that is independent of the specific goal 
pursued, and this information can be flexibly used for any goal. This is not true of the reactive 
controller. 

8.4.2 Focussing, Partial Policies and Replanning 

Direct observation of the behaviour of the simulated robot makes it possible to understand 
how the controller works in terms of partial policies and replanning. As mentioned, when 
assigned a goal the planning controller spends many cycles planning before reaching it. After 
some time it begins to act. Two behaviours have been observed: 
• Sometimes when the simulated robot starts to act, it reaches the goal along a quite 

straight path without ever stopping to plan again. 
• Some other times, when the simulated robot starts to act, it arrives in some states where 

the confidence is low. For example, sometimes it goes right past the goal, or ends up in 
states far from the direct start-goal path. In these cases the simulated robot stops and the 
controller starts to plan again. 

These two behaviours are interesting because: 
• The first behaviour shows that when the confidence at the start reaches the threshold, the 

confidence for the states closer to the goal and along the direct start-goal path is also 
higher than the threshold (indicated by the fact that the simulated robot does not stop to 
re-plan). This can be explained by observing that reinforcement learning works by 
updating the evaluations (and hence the actions' probabilities) from the goal backwards 
towards other states. The resulting behaviour is desirable because it avoids the controller 
planning, executing one action, re-planning, executing another action, etc.; i.e. it assures 
that the partial policy prepared at the beginning allow the simulated robot to reach the 
goal with high probability. This probability can be set indirectly by setting the maximum 
confidence threshold. 

• The second behaviour shows that the policy prepared is really a partial policy. In fact if 
the simulated robot reaches “unexpected” states it starts to re-plan. Another result 
confirms that the policy is partial and focussed on the goal and the current start. When the 
simulated robot reaches the goal, it is set at a new position of the environment chosen at 
random. When this happens, the controller always starts to re-plan (except when it is set 
along the old direct start-goal path). This shows that the old policy is not adequate for 
states that lie far away from the old direct start-goal path, i.e. that the old policy was 
actually a partial policy. It should be noticed that this property of the planner descends 
from the fact that reinforcement learning methods are being used to implement planning. 

With repeated experience the planning controller shows two other relevant changes in 
behaviour. First, the amount of planning needed to reach the goal decreases sharply with 
experience, and soon falls to zero. This happens because the outcome of the planning process 
is stored (“compiled”) in the weights of the evaluator and actor, so that the reactive 
components of the controller become “confident” enough to reach the goal without further 
planning. This shows how the controller is capable of finding a balance between acting and 
planning. Second, experience in the world further improves the performance, bringing it from 
about 200 to about 50 steps. This means that the outcomes of the simulated and real 
experience merge suitably in the weights of the evaluator and actor. This is a typical property 
of Dyna-like architectures. 



 

 

 

8.4.3 Neural Networks for Prediction: “True” Images as Attractors? 

The predictor incorporates the state transition-function part of the model of the environment. 
This is a critical component of the controller because the whole process of planning relies on 
it, so it is important to analyse how it works. This is done in this section. 
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the quality of the simulated walks generated by the predictor. Notice that they have been stretched to 
have a better correspondence with the simulated walks: this means that the simulated walks tend to be 
made up by more steps than the real walks. Notice that the predictor is capable of coping with noise (a: 

an activation that is generated by noise and not by a landmark, is suppressed after some time), is 
capable of predicting the appearance of landmarks in the scene (b), is capable of predicting the 

appearance of a landmarks form behind other landmarks (c) and the disappearance of landmarks 
behind other landmarks (d); however, the predictor also produces distorted images, for example it 

generates non-existing landmarks (e), has the tendency to generate persistent landmarks in the centre 
of the scene (f: this happens because the stability of a landmark’s image in the middle of the scene 

when the simulated robot approaches it is a very strong regularity), has biases (in the first example the 
simulated walk leads to the left of the northeast landmark, while the simulated walk leads towards it; 
in the second example the simulated walk leads further away from the north east landmark compared 
to the real walk), tends to generate images that change more slowly than real images (as mentioned, 

the number of real images on the right are less than images generated by the predictor). 

 
The behaviour of the predictor can be understood by investigating the nature of the 

predictions that it generates while planning. Figure 8.7 shows the simulated walks generated 
by the planning controller. The simulated robot begins to move at the start. The “selected” 
action has been fixed to northwest (or north for the second graph shown in the figure) by 
suitably changing the simulation program. A sequence of 29 successive predictions has been 
recorded for both cases and plotted in the figure. A good capacity of the predictor to anticipate 
the consequences of the actions is apparent from the graphs. For example the predictor is 
capable of coping with noise, is capable of anticipating the appearance of landmarks from 
behind other landmarks, or the disappearance of them. To check this, consider the graphs 
reported on the right of the figure: they report the images perceived by the simulated robot 
while it moves toward northeast or north (alternatively consider Figure 8.1 and consider how 
the landmarks should appear to the simulated robot while it moves along a straight path that 
goes from the start to the northwest or the north goal). The predictor also makes some 
mistakes (that, incidentally, are quite interesting). For example it has biases, e.g. it tends to 
keep fixed images of landmarks in the middle of the scene because this is a strong regularity 
observed in the environment, it “loses” the image of some landmarks and predicts to see non-
existing landmarks. 

To collect other data on the predictor's behaviour, a simulation where the simulated robot 
selects the actions autonomously has been run. Figure 8.8 reports these data. The simulated 
robot guided by the planning controller was set at the centre of the arena and had to plan to go 
to the northwest goal. The confidence threshold was set at a high value (1) so that the 
controller kept planning without ever moving. After 200,000 cycles of planning the 
predictions starting from the current real visual input (i.e. the one corresponding to the centre 
of the arena) were recorded until the goal was “mentally” reached. The two graphs reported in 
the figure refer to two runs of the experiment that differ in the starting image because of 
perception noise. These and other runs show the coherence of the simulated walks generated 
by the predictor. For example notice that in the bottom graph of the picture, the image of a 
wrongly “lost” landmark (the one at the northwest corner, cf. Figure 8.1) is recovered (you 
can see this by comparing the two graphs). The same type of simulations also show mental 
walks that fail to reach the goal, for example because they converge to images that do not 
correspond to positions in the environment. 

The predictor's capacity to generate images that approximately correspond to real 
situations for 29 succeeding steps is quite surprising. In fact one would expect that noise 
would accumulate when some noise predictions are used as input patterns to generate further 
images. Instead, it seems that there is a mechanism that keeps this noise under control. A 



 

 

 

hypothesis can be formulated about this mechanism. The images that correspond to real 
situations tend to be “attractors” for the images of the simulated walk generated by the 
predictor, with “basins” of attraction that capture the “noisy” images. Notice that here these 
concepts are used because they facilitate the description of the results of the experiments, but 
are not intended in a rigorous technical sense (e.g. cf. Wuensche, 1998, for a rigorous 
definition and use of these concepts). This property of the predictor depends on the fact that it 
is trained in the environment, and on the neural networks' property of prototype extraction (cf. 
s. 4.4.2). In fact when the predictor is trained, the images used as input and teaching output 
are the ones that correspond to real views of the environment. As a consequence of this and 
the prototype extraction property, even when some images corrupted by noise are sent to the 
predictor as input, the output will tend to be an image that corresponds to a real view and the 
noise will tend to be filtered out. 
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If true, this would be a fundamental mechanism to preserve the correspondence of the 
predicted images with positions in the environment. Further investigation is needed to test this 
explanation and to study ways of avoiding spurious attractors. 

8.5 Limitations of the Neural Forward Planner 

The functioning of the planner depends on the possibility of building a reliable model of the 
environment. In fact first the predictor is suitably trained, then planning starts on the basis of 
the assumption that the model of the world is sufficiently accurate and that training the 
evaluator and actor through it will improve their abilities to evaluate and act. This assumption 
is not true in general for all task domains. Moreover, one might want that planning start in any 
moment of the “life” of the agent, so the planner should be capable of evaluating the quality 
of its predictions and deciding if planning or not accordingly. This drawback of the planner 
also affects all the planners presented in the following chapters and the planners reviewed in 
s. 4.5. 

The controller presented in this chapter has some limitations. One is that the first reaching 
of the goal within the model of the environment is achieved as the result of a random-walk 
search. This is very inefficient (cf. s. 8.4.1). Given that the goal and the model of the 
environment are known it should be possible to carry out a goal-oriented search. This will be 
done in chapter 9. 

There is another limitation connected with the previous one. The current controller 
predicts and plans at the same level where it acts, i.e. at the level of the “primitive-actions” 
available to the controller. At this level of detail it is possible that the model of the 
environment cannot be accurate enough because the environment is intrinsically 
unpredictable. A solution would be to plan at a coarse level, where details are ignored, and to 
act at a fine level. In fact, abstraction can allow a better prediction (cf. Russell and Norvig, 
1998, p. 409). How would it be possible to implement this kind of “coarse planning”? The 
thesis starts to tackle this problem in chapter 11. 

8.6 Conclusion 

This chapter has presented a neural network controller (“neural forward planner”) that is 
inspired by Dyna-PI architectures, but that, unlike them, is taskable. It has achieved this result 
by introducing the “matcher”, a new neural network for goal detection. This has eliminated 
the need, present in the original Dyna-PI architecture, for the part of the model of the 
environment related to the reward. The simulations have shown that taskability allows the 
planning controller to reach the goal in fewer steps than the underlying reactive controller 
from the first time the goal is pursued. This is one of the real advantages of planning 
controllers vs. reactive controllers. 

Planning is executed by using the knowledge stored in a modular network, the 
“predictor”. The predictor models the effects produced by the actions when they are executed 
in the environment. When the controller is planning, the predictor is used to generate 
sequences of future states starting from the current state (trajectory sampling, cf. s. 3.4). 
During planning these sequences are generated iteratively and have a length that is increased 
if the goal is not encountered, and is decreased when it is encountered. This planning strategy 
allows the system to focus planning on states concentrated around the start-goal path, and to 
build partial policies. 
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The experiments have also shown how the controller not only builds partial policies, but 
also uses re-planning when necessary. In particular they have shown that when the controller 
encounters relatively novel states it executes planning, while when it encounters relatively 
familiar states it acts reactively. This also implies that after the controller has enough 
experience about one goal it does not need to plan anymore. 

The planning processes use representations consisting of “images” generated by the 
predictor and learnt autonomously. Some simulations have shown that the predictor has a 
significant capacity to maintain the consistency between the simulated trajectories generated 
and the possible trajectories experienced in the world when the policy is executed. A possible 
explanation of this is that images that correspond to views of the environment are “attractors” 
for the images generated by the predictor. 

The experiments have also demonstrated some limitations of the controller, such as the 
need to assume the accurateness of the model of the world when planning is executed, and the 
large number of planning cycles needed to reach the goal the first time due to the fact that the 
initial search is carried out on the basis of a random walk. They have also shown that planning 
takes place at the same fine level of actions, and hence it is not very efficient. 
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9 The Neural Bidirectional Planner 

9.1 Introduction: More Efficient Exploration 

Problems Tackled. The problem addressed by this chapter is how to further focus planning 
on relevant regions of the state space within the model of the environment. The planning 
controller presented in chapter 8 executed forward “simulated walks” within the model of the 
environment. These simulated walks started from the image of the position currently occupied 
by the simulated robot and tried to reach the goal within the model of the environment. This 
controller had a basic problem shared with reinforcement learning methods and Dyna 
architectures in general: the first time that the goal was pursued the controller tried to reach 
the goal on the basis of a random walk. With large state spaces this random walk encountered 
the goal rarely, hence the whole process of planning was very slow. The controller proposed 
and implemented in this chapter tries to solve this problem. 
 
Overview. The controller proposed here implements planning by generating simulated 
experience both forward from the current state and backward from the goal. The simulated 
forward walks are as the ones executed by the forward planner of chapter 8. The simulated 
“backward walks” are based on two new neural components, the back-actor and the back-
predictor, respectively capable of “guessing which action could have brought to the current 
state” and of “guessing what was the state from which the system has reached the current 
state”. The simulated backward walks start from the goal and explore other states from it in all 
the directions (as we shall see, the controller learns to “escape” in straight lines from the 
goal). While this is done, the evaluations, the policy, and the “back-policy” are updated. The 
backward walks produce two important advantages when compared to the forward walks: 
• An efficient exploration of the model of the environment: the goal is “found” 

immediately, given that the backward walks start from it. 
• A quick propagation of the evaluations backward from the goal, given that the evaluation 

of each state is updated on the basis of an evaluation of a state that has just been updated. 
The simulations will also show that the bidirectional planner has the strengths of the forward 
planner of chapter 8. First, it is taskable and it is even more “goal-oriented” because the 
planning activity focuses around the goal. Second, it is capable of transferring skills between 
problems with same goal and different starts. Third, when it solves a problem several times it 
is capable of accumulating “skills” within the reactive components so that planning is no 
longer necessary. 

 
What is New and Related Literature. The general idea of planning backward from the goal 
is not new. Literature on problem solving has already showed the advantages of searching 
forward from the start and backward from the goal by studying “bidirectional search” (Pohl, 
1971; cf. s. 13.1.1). STRIPS planning (Fikes and Nilsson, 1971; cf. s. 2.3) is completely based 
on backward searches from the goal. However, the specific mechanisms that have been 
proposed by these two branches of research are not applicable to stochastic environments such 
as the ones considered here. 
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The idea of the backward updating of the evaluations has also been investigated within 
the reinforcement learning literature. In particular Lin (1992), Thrun (1992), Reynolds (2002), 
have shown how updating evaluations backward from goal is a powerful strategy because 
state-evaluations are updated on the basis of evaluations updated in the previous time steps. 
However, the systems proposed by these authors use memory structures to store sequences of 
states that led to the goal, or other type of experiences, in order to use them for iterated 
“backward” backups. If one wants to use neural networks, this strategy would raise the 
problem of how implementing these memory structures and how using the information stored 
in them. Prioritised sweeping (Moore and Atkenson, 1993; Wiering et al., 1998; Dearden, 
2001; cf. s. 3.4), by updating states or state variables whose evaluations would change a lot if 
updated, often propagates evaluations backwards from states close to the goal. 

 
Chapter's Outline. S. 9.2 presents the task used to test the controller. S. 9.3 presents the 
details of the components of the bidirectional planner. S. 9.4.1 shows that the backward 
planner has the same strengths of the forward planner. S. 0 shows the advantages of the 
bidirectional planner vs. the forward planner in terms of exploration and propagation of 
evaluations. Finally s. 9.5, 9.6 and 9.7 respectively analyse the drawbacks of the models, 
propose a controller simpler than the bidirectional planner, and draw conclusions. 

9.2 Scenario of Simulations 

The scenario and the simulated robot used in this chapter are the ones illustrated in s. 6.2 (cf. 
Figure 6.2). Figure 9.1 shows the scenario and the particular goal and start positions used in 
this chapter. 

 

 

 

 

 

 

 

 

Figure 9.1: Left: The scenario of test containing the goal (star), five landmarks (black circles), the 
scope of the simulated robot's 50 visual sensors (delimited by the rays), the simulated robot (circle at 
origin or rays), and the 12 start positions (white circles) at which the simulated robot is repeatedly set 

in ordered succession. Right, in order: The activation of the simulated robot's sensors at its current 
position (affected by noise), the corresponding contrasts, and the goal (contrasts). 

 
The task the simulated robot has to accomplish is to reach the goal position from the start 

position at the northwest corner. All the 12 start positions are used, from the one at the 
northwest corner to the one at the south east corner. When the last start position at the 
southeast corner has been used, the whole cycle is repeated starting from the start position at 
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the northwest corner. The particular start states have been chosen to guarantee the same 
distance from the goal. This was important for the measurements reported below. 

9.3 Architectures and Algorithms 

9.3.1 The Reactive Components of the Architecture 

Figure 9.2 shows both the reinforcement learning and the planning components of the 
architecture. The reactive components of the controller have the same architecture and 
function as the components of the forward planner presented in chapter 8. 
 

 

 

 

 

 

 

 

 

 

 

Figure 9.2: The controller of the simulated robot. Networks with a bold, thin and dashed border 
implement reinforcement learning, forward planning, and backward planning respectively. Arcs and 
arrows indicate forward and backward connections respectively. They “copy” an activation pattern 

from one layer to another. The four and five spike stars indicate the channels respectively set open and 
close by the action-planning controller when acting (vice versa when planning). Dashed arrays 
indicate the learning signal used to update the weights of the evaluator, actor and back-actor. 

 

9.3.2 The Planning Components of the Architecture: Forward Planning 

The predictor, that allows “forward planning”, is the same as the one employed in chapter 8. 
Recall that it is a set of 8 feed-forward two-layer networks (“experts”) with sigmoid output 
units, each corresponding to one action. Each expert takes yt as input, and is specialised to 
predict the following sensors' activation xt+1 if the action corresponding to it is executed. The 
experts are trained while the simulated robot navigates randomly in the environment for 
200,000 cycles. This training is done before the main simulations illustrated below take place. 

The action-planning controller is a hand-designed algorithm that decides when the 
controller has to plan or to act, directs the flow of information among the different 
components of the whole system, and manages the generation of the forward and backward 
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simulated walks. The pseudo-code of this algorithm is illustrated in Figure 8.3. The main 
differences between this algorithm and the one employed in chapter 8 are as follows: 
• When the controller is planning, it has to decide when to execute forward planning and 

when to execute backward planning. 
• It has to control the flow of information between the different components of the system 

when the controller is executing backward planning. 
 
01 IF(NewGoalHasBeenAssigned) 
02   MaxStepsPlan := 1 
03   ConfThresh := MaxConfThresh 
04   ForwardPlanning := TRUE 
05   StepPlan := 0 
06   InputFromWorld := TRUE 
07 IF(InputFromWorld) 
08   System gets input x

t
 (y

t
) from the robot’s sensors 

09   Actor gets y
t
 and gives m

t 

10   Confidence is computed on the basis of m
t
 

11   IF(Confidence < ConfThresh) 
12     Planning := TRUE 
13   ELSE 
14     Planning := FALSE 
15     ConfThresh := MIN(MaxConfThresh, ConfThresh + Gain) 
16 IF(Planning) 
17   StepPlan := StepPlan + 1 
18   ConfThresh := ConfThresh - Decay 
19   IF(ForwardPlanning) 
20     IF(InputFromWorld = FALSE) 
21       System uses predictor’s output y

t
 as input 

22     ELSE 
23       InputFromWorld := FALSE 
24     IF(GoalReached OR StepPlan = MaxStepsPlan) 
25       IF(StepPlan = MaxStepsPlan) 
26         MaxStepsPlan := MaxStepsPlan + 1 
27       ELSE 
28         MaxStepsPlan := MIN(MaxStepsPlan, StepPlan * 2) 
29       InputFromWorld := TRUE 
30       IF(BidirectionalPlanning) 
31         ForwardPlanning := FALSE 
32         ForwardSteps := StepPlan 
33         GoalAsInput := TRUE 
34         InputFromWorld := FALSE 
35       StepPlan := 0 
36   ELSE 
37     IF(GoalAsInput = TRUE) 
38       System uses goal yg as input 
39       GoalAsInput := FALSE 
40     ELSE 
41       System uses back-predictor’s output y

t
 as input 

42     IF(StepPlan = ForwardSteps) 
43       ForwardPlanning := TRUE 
44       InputFromWorld := TRUE 
45       StepPlan := 0 
46 IF(Planning) 
47   IF(ForwardPlanning) 
48     Evaluator gets y

t
 and gives V'π[y

t
]
 

49     Actor gets y
t
 and gives m

t
  

50     Stochastic selector gets m
t
 and gives a

t
 

51     Predictor gets y
t
, a

t
 and gives x

t+1
 (y

t+1
) 

52     Matcher gets y
g
, y

t
 and gives r

t
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53     TD-Critic gets V'π[y
t-1
], V'π[y

t
], r

t
, gives e

t-1
 

54     Evaluator gets y
t-1
, e

t-1
 and learns 

55     Actor gets y
t-1
, m

t-1
, a

t-1
, e

t-1
 and learns 

56     IF(BidirectionalPlanning) 
57       Back-Actor gets y

t
 and gives m

t-1
 

58       Back-Actor gets y
t
, m

t-1
, a

t-1
(actor), e

t-1
 and learns 

59   ELSE 
60     Back-actor gets y

t
 and gives m

t-1
 

61     Back-stochastic selector gets m
t-1
 and gives a

t-1
 

62     Back-predictor gets y
t
, a

t-1
 and gives x

t-1
 (y

t-1
) 

63     Evaluator gets y
t-1
 and gives V'π[y

t-1
] 

64     Matcher gets y
g
, y

t
 and gives r

t
 

65     TD-Critic gets V'π[y
t-1
], V'π[y

t
], r

t
 and gives e

t-1
 

66     Evaluator gets y
t-1
, e

t-1
 and learns 

67     Back-actor gets y
t
, m

t-1
, a

t-1
, e

t-1
 and learns 

68     Actor gets y
t-1
 and gives m

t-1
 

69     Actor gets y
t-1
, m

t-1
 (actor), a

t-1 
(back-actor), e

t-1
 and 

learns 
70 ELSE 
71   Evaluator gets y

t
 and gives V'π[y

t
]
 

72   Actor gets y
t
 and gives m

t
 (already done in line 9) 

73   Stochastic selector gets m
t
 and gives a

t
 

74   Matcher gets y
g
, y

t
 and gives r

t
 

75   TD-Critic gets V'π[y
t-1
], V'π[y

t
], r

t
 and gives e

t-1
 

76   Evaluator gets y
t-1
, e

t-1
 and learns 

77   Actor gets y
t-1
, m

t-1
, a

t-1
, e

t-1
 and learns 

78   System executes a
t
 in the world 

79   IF(BidirectionalPlanning) 
80     Back-Actor gets y

t
 and gives m

t-1
 

81     Back-Actor gets y
t
, m

t-1
, a

t-1 
(actor), e

t-1
 and learns 

Figure 9.3: Pseudo-code of the planning-acting controller. The algorithm is executed at each cycle. 
“:=“ is the assignment operator. In the simulation the parameters are set as follows: Decay = 0.000001, 

Gain = 0.01, MaxConfThresh = 0.15 

 
When the variable BidirectionalPlanning is set at FALSE the whole controller is 

equivalent to the forward planner investigated in chapter 8. Recall that in this case the 
controller can be either in planning or acting mode. The mode is decided on the basis of the 
controller's “confidence”, the highest of the actions' probabilities. If the confidence is above a 
certain threshold the controller acts in the world, otherwise it simulates experience by using 
the predictor. When the controller is forward planning the evaluator and actor function and 
learn in the same way as  they do when acting in the world. As for the previous chapter, the 
parameters are set as follows: Decay = 0.000001, Gain = 0.01 and MaxConfThresh = 0.15. 

9.3.3 The Planning Components of the Architecture: Bidirectional Planning 

If the variable BidirectionalPlanning of the algorithm illustrated in Figure 9.3 is set at TRUE, 
the algorithm implements bidirectional planning. As the forward planner, the bidirectional 
planner decides if planning or acting on the basis of the measure of confidence at the position 
currently occupied by the simulated robot (line 7 to 14). The major difference between the 
two algorithms is that while planning the bidirectional planner generates prediction chains 
alternately forward from the current position image (line 47 to 55 implement one cycle of 
forward chain) and backward from the goal image (line 38; line 60 to 69 implement one cycle 
of backward chain). Planning always starts with a forward simulated walk and ends with a 
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backward simulated walk. The length of each backward chain is the same as the last forward 
chain (line 32 and 42). Forward chains are executed as in forward planning. Backward chains 
are executed through the “back-predictor” and “back-actor”. 

The back-predictor is a network with the same architecture as the predictor. While the 
predictor is trained to produce the association yt, at → xt+1, the back-predictor is trained to 
produce the association yt, at-1 → xt-1 (the time indexes are used backward) i.e. to remember 
(or guess) which situation xt-1 led the system to the situation yt after executing action at-1 (line 
62). Notice that each couple of experts of the predictor and of the back-predictor 
corresponding to a particular action could have been integrated in one bi-directional network 
associating xt ↔ xt+1 under action at. This has not been done since for simplicity only feed-
forward networks have been used. 

The back-actor has the same architecture as the actor, and is used to generate actions for 
the backward chains (the at-1 of the association yt, at-1 → xt-1, see line 60 and 61). Before the 
tests shown below the back-actor weights are randomly drawn in the interval [-0.001, 0.001], 
so initially it selects actions randomly. During a back cycle that leads from yt to yt-1 (from xt 
to xt-1), after the back-actor selects the at-1, the merit of this action is updated according to the 
same formula used for the actor (see equation 3) and with the usual error et-1 = (rt + γ V'π[yt]) - 
V'π[yt-1]. However, now the merit of the action is updated using yt as input for the back-actor 
(and not yt-1 as for the forward actor, line 67). Notice that with this training the back-actor 
learns to generate actions that lead to states with the lowest possible evaluation V'π[yt-1], i.e. 
states far from the goal and visited few times. When backward chains are generated, the actor 
and evaluator are also updated using the error et-1. In particular the actor produces the actions’ 
merit mt-1 in correspondence to yt-1, and then its weights are updated on the basis of those 
merits and the action at-1 selected by the back-actor and back-stochastic selector (line 68 and 
69). During forward planning and acting, the back-actor is also trained by using et-1 (line 56 to 
58 and 79 to 81). To this end, the back-actor yields the actions’ merit mt-1 in correspondence 
to yt, and then its weights are updated on the basis of those merits and the action at-1 selected 
by the actor and stochastic selector for yt-1. The overall functioning of the backward planning 
algorithm can be summarized as follows. The back-actor learns to yield backward walks that 
“escape” from the goal in “straight” lines, hence creating a big area of positive evaluations 
around the goal. This area is easily “found” by the actor’s forward walks that, as a 
consequence, expand the area toward the position occupied by the simulated robot. At the 
same time the actor becomes competent in the area where positive evaluations diffuse. 

Some remarks about backward planning are due. Updating the evaluator when the back-
actor is selecting the actions may cause some problems. In fact the actor-critic methods 
require that state evaluations reflect the expected reward averaged over the actions selected by 
the current policy (i.e. the actor, cf. s. 13.2.3). Notwithstanding this, the choice made here is 
justified because the actor's policy and the back-actor's “back-policy” tend to be quite similar 
for the following reasons: 
• The actor and the back-actor have the same structure and are trained an equal number of 

times with the same error signals. 
• A state from which the back-actor selects an action is perceptually very similar to the 

state to whom this action brings, and from which the actor selects its action. 
• The direction of the maximum slope of the evaluation gradient field built by the actor and 

by the back-actor tends to be the same (i.e. toward the goal). 
Incidentally notice that these observations suggest that maybe it is possible to integrate the 
actor and back-actor in a unique network. 
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Figure 9.4: Positions occupied by the simulated robot the first time that it reaches the northeast goal by 
reinforcement learning (left) forward planning (centre) and bidirectional planning (right). 

 
Backward planning should present two important advantages vs. forward planning. The 

first advantage is in terms of exploration. Updating the evaluations backward from the goal 
brings to immediately change the evaluations of states close to the goal. On the contrary, 
forward planning starts to update the evaluations only after the goal is encountered for the 
first time. Since the first search of the goal is usually done by random walk (but cf. Sutton, 
1990; Thrun, 1992; Wyatt, 1997), the event can take very long to occur (the expected time is 
exponential in the number of steps separating the start from the goal, Thrun, 1992). The 
second advantage is in terms of propagation of evaluations between states. This is particularly 
fast if done backward from the goal because newly updated evaluations of states are used to 
update the evaluations of other states. 

 

 

 

 

 

 

 

Figure 9.5: The graph reports the performance for both the forward planner and the bidirectional 
planner, averaged over 10 simulations run with different random seeds. Y-axis: number of cycles of 

planning for each success. X-axis: the first 36 consecutive successes. For graphical reasons the vertical 
axis has been cut at 6000: the forward planner took 52,923 planning cycles to achieve the first success. 

 

9.4 Results and Interpretation 

9.4.1 Common Strengths of the Forward-Planner and the Bidirectional Planner 

The forward planner and the bidirectional planner have been tested and compared with the 
scenario and task illustrated previously. The test for each planner has been done 10 times with 
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different random seeds: the graphs shown below will report the averages over these 10 runs. 
Each time the simulated robot reaches the goal, the number of actions executed, and the 
number of planning cycles used to reach it, are measured. 

The results of the simulations show that the two controllers share the following strengths. 
In order to plan, both controllers only need to know the start (or current) position and the goal 
position. Planning is carried out on the basis of the information stored in the predictor and the 
back-predictor. Moreover, the goal is reached efficiently from the first time it is pursued: 245 
and 186 actions respectively executed by the forward and backward controller vs. an average 
of 1432 cycles executed by the random walk (Figure 9.4). This implies that the two planning 
controllers are taskable. 

When the goal is pursued several times from the same start position, the performance 
improves both in terms of planning cycles (cf. Figure 9.5) and actions executed (Figure 9.6). 
Notice that when enough experience accumulates the goals are achieved reactively. 

 

 

 

 

 

 

 

 

 

Figure 9.6: The graph reports the performance for both the forward planner and the bidirectional 
planner, averaged over 10 simulations run with different random seeds. Y-axis: number of actions 

executed for each success. X-axis: the first 61 consecutive successes. Curves have been used instead of 
a histogram to ease the comparison between the two conditions. 

The knowledge that is gathered while planning to reach the goal from a given start is used 
to reach the same goal from different starts. Figure 9.5 and Figure 9.6 show that the planning 
and acting cycles needed to reach the goal starting from the different start positions, decrease 
steadily when the robot is set at the succeeding start positions (the optimal path, not 
considering noise and obstacles, is about 15 steps long). This happens even if the start 
positions are new (cf. data about the first 12 successes). The reason why this happens is that 
when pursuing a goal, the controller visits several states within the model of the world and 
learns what to do in order to reach the goal from them. This knowledge is also useful when 
the controller has to reach the same goal departing from new starts. 

9.4.2 The Forward Planner Versus the Bidirectional Planner 

When the performance of the two controllers is compared, the following differences become 
apparent. Backward planning is more “goal oriented” than forward planning. The forward 
planner spent nearly ten times more planning cycles than the bidirectional planner (52,923 vs. 
5,397 cycles) to reach the goal for the first time in the environment. After the first success in 
the environment, the bidirectional planner maintained its superiority for the following trials 
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(Figure 9.5). This difference was caused by the fact that the forward planner took several 
cycles to find the goal for the first time when planning (i.e. while generating the simulated 
walks): 18,892 planning cycles on the average over the 10 simulations. In comparison the 
backward planner was particularly efficient: in 6 simulations out of 10 it reached the goal in 
the environment without having ever reached it while planning. This happened because the 
evaluations started to be updated immediately when the controller started to plan since the 
goal was immediately “found”. In these regards it can be said that the bidirectional planner 
implements a better exploration of the state space. 

 

 

 

 

 

 

 

 

Figure 9.7: Evaluations yielded by the controller when set at 20 × 20 different positions of the arena. 
The area of a white square (positive evaluations) and a black square (negative evaluations) is 

proportional to the absolute evaluation yielded at that position. The evaluations have been recorded at 
the cycle after the first simulated reaching of the goal in the case of forward planning (left), and after 
18,892 cycles in the case of the backward controller (right). 18,892 is the average number of cycles 

that forward planning took for reaching the goal for the first time while planning. 

 
This efficiency in exploration leads to a faster propagation of values and updating of the 

policy. Figure 9.7 shows the evaluations yielded by the two controllers in 20×20 positions of 
the arena after some cycles of action and planning. The bidirectional planner yields 
evaluations much closer to the optimal ones than forward planning (recall that the optimal 
evaluations are equal to γ to the power of the number of steps to the goal). This exploration 
efficiency should be compared with that of other controllers that implement other forms of 
“undirected” and “directed” exploration (Thrun, 1992). 

Backward planning is also more effective than forward planning in propagating the 
evaluations. Direct observation of the dynamics of the graph of Figure 9.7 drawn while the 
simulation was running, showed that at the beginning of the simulations with the forward 
planner the evaluations fell again to 0, as they were at the beginning of the simulation, 
between a (simulated) success and the next one. This happened because in the absence of 
positive rewards, forward exploration brought the evaluations toward 0. In fact on the average 
the decay coefficient γ lowers the “targets” of the evaluations updated. On the contrary, in the 
case of the bidirectional planner positive evaluations were continuously “injected” into the 
graph starting from the goal. In fact the evaluation of each state was updated backward from 
the goal, so each state’s evaluation was updated on the basis of the goal or on the basis of the 
evaluation of a state that had just been updated. As a consequence the evaluation gradient 
field approached its final shape quicker. 
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9.5 Limitations of the Neural Bidirectional Planner 

The bidirectional planner has three drawbacks. The first one, shared with the forward planner, 
is that it relies on the assumption that the model of the environment is enough accurate when 
planning starts. Here this assumption is fulfilled since a long training of the predictors is 
accomplished before planning starts, and is enhanced by the task in hand. However, it cannot 
be guaranteed in general for all other possible situations and for all other task domains (cf. s. 
8.5). 

The second drawback concerns the backward planning process of the controller. The 
generation of backward simulated walks starting from the goal on the basis of the back-actor 
and back-predictor may not be possible with some problem domains different from 
navigation. 

The third drawback is that the bidirectional planner has a quite complex architecture 
compared to the forward planner, because it needs the back-actor and back-predictor to 
generate simulated walks backward from the goal. 

9.6 A New “Goal Oriented Forward Planner” (Not Implemented) 

This section proposes a neural planner that is only slightly more complex than the forward 
planner, but that might have interesting properties in common with the bidirectional planner. 
The key idea of this planner is that one way to exploit the knowledge of the goal without 
doing backward search, is to use the goal state to update the evaluation of the goal state itself. 
Recall that within the forward planner presented here when the goal is reached a new 
simulated walk starts. No “succeeding state's evaluation” is available to update the goal state's 
evaluation on the basis of the TD-Error formula. The consequence is that the evaluations of 
all states are 0 and all the backups have no effect until the goal is reached. The planner 
proposed here updates the evaluation of the goal state toward 1 each time that the forward 
simulated walks fails to reach the goal. This “goal oriented forward planner” should have 
several strengths in comparison to the forward planner: 
• The evaluation of the goal state would become close to 1. 
• Because of the generalisation properties of neural networks, all the states having some 

resemblance with the goal state would have a positive evaluation and the higher the 
resemblance the higher the evaluation. These evaluations would “guide” the forward 
searches towards the goal, similarly to what happens with the bidirectional planner. 

• The evaluations of the goal and the states similar to it would be continuously renewed. 
This is important because the experiments have shown that the evaluations tend to decay 
if the goal is not reached continuously. 

• The direct updating of the evaluations of the goal state and of the states similar to it, 
would progressively be eliminated when the simulated walks start to reach the goal 
regularly. This would replace the initial arbitrary evaluations of states similar to the goal 
with the more correct evaluations based on the actor's policy. 

This planner could be particularly powerful for “assembly planning”, i.e. planning for tasks 
where the goal state is made of an “assembly” of objects organised in a pattern, and where 
each object in the correct “position” can be considered as a sub-goal (Russell and Norvig, 
1995). The planner would also incorporate the idea exploited by some landmark planners that 
build the evaluation gradient field on the basis of the similarity between the states and the 
goal (e.g. Schmajuk and Blair, 1993). Unfortunately this planner has been envisaged at the 
end of the PhD research, when there was no time to implement and test it. 



 

 

 
127

9.7 Conclusion 

This chapter presented a new neural bidirectional planner. When it plans this planner is more 
focussed on the goal than the forward planner presented in chapter 8. In particular it does not 
rely on a random-walk search when the goal is pursued for the first time. In fact the 
bidirectional planner executes a sequence of explorations (of the model of the environment) 
that start both from the current state and from the goal. In this way backups are focussed on 
states around the area of the start/current position and around the area of the goal. As in the 
previous controller, during these explorations the state evaluations and the action policy are 
updated. Moreover, during the backward exploration the back-actor learns to select actions 
that bring quickly away from the goal when producing backward simulated walks. 

The controller has been shown to have the same strengths of the controller proposed and 
implemented in chapter 8. These strengths are: (a) taskability; (b) improvement of 
performance when the goal is encountered several times; (c) skill transfer when the same goal 
is pursued from different starts. 

The simulations have also shown that the controller converges faster than the forward 
controller of chapter 8 for two reasons: (a) it is more efficient in exploring the state space 
within the model of the environment; (b) it is quicker in propagating the evaluations backward 
from goal. 

The bidirectional planner has some drawbacks. First, its functioning assumes the 
accurateness of the predictors. Second, to work it needs to generate backward walks, and this 
may not be possible in some problem domains. Third, it has a quite complex architecture and 
functioning. With regards to the latter point, a new “goal-oriented forward planner” has been 
proposed that has a complexity similar to the forward planner's one, but that might have some 
of the strengths of the bidirectional planner. 
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10 Neural Network Planners and Multi-Goal Tasks 

10.1 Introduction: Neural Planners, Interference and Modularity  

Problems Tackled. This chapter evaluates how the neural planners implemented in the 
previous chapters deal with the problems of generalisation, interference and modularity, 
introduced in chapter 7. To this purpose it compares the performance and behaviour of the 
reactive systems, forward planner, and bidirectional planner presented in the previous 
chapters by using the multi-goal scenario presented in chapter 7 as a test. 
 
What is New and Overview. Chapter 8 and 9 have implemented two controllers developed 
within the framework of the Dyna architectures (Sutton, 1990). These controllers are capable 
of operating in “reactive mode” or “planning mode”. While planning the controllers execute a 
sequence of forward “explorations” from the current state (forward planner) or both forward 
from the current state and backward from the goal (bidirectional planner) within the model of 
the environment. During these explorations the state evaluations and the action policy are 
updated. The action probabilities are used to build a measure of the controller's “confidence” 
in the policy, and to switch between acting and planning mode. 

Chapter 7 has implemented a modularised version of the basic neural-network actor-critic 
architecture capable of coping with asynchronous multi-goal problems. The idea was to use a 
modularised neural-network model in order to; (a) exploit generalisation; (b) avoid 
interference between input-output associations and problems that did not share common 
structure. 

The novelty of this chapter (cf. Baldassarre, 2001c) is that the planning controllers 
showed in chapter 8 and 9 are integrated with the modular architecture proposed and 
implemented in chapter 7, originating two planning modular neural-network controllers. The 
performance of these two controllers and reinforcement learning is compared using the 
asynchronous multiple-goal task proposed in chapter 7. The comparison aims at verifying if 
the results obtained with the controllers engaged in a single goal task still hold for a multiple-
goal task. These results showed that: (a) planning allowed the controller to reach the goal with 
improved efficiency in comparison to reinforcement learning the very first time the goal was 
pursued; (b) both planning controllers improved their performance when the goal was 
encountered several times; (c) the bidirectional planner outperformed the forward planner in 
terms of planning and acting cycles needed to achieve the goals, thanks to a more efficient 
exploration policy and a faster propagation of evaluations. 

The test run in this chapter could appear unnecessary. In fact if the modular 
reinforcement-learning architecture shown in chapter 7 is capable of dealing with the multi-
goal task, and the planning controllers introduced in chapter 8 and 9 work well independently 
of the underlying reinforcement-learning architecture used, then a controller based on both 
should not have problems with multi-goal tasks. This is not the case: planning controllers 
could be affected more seriously by catastrophic interference than the corresponding 
reinforcement learning systems. The reason is that in the case of reinforcement learning, when 
a goal is reached a new goal is pursued. Instead, in the case of planning the controller focuses 
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on the same goal for a long time before pursuing a new one. For example, recall that the 
neural forward planner needed to reach the same goal several times in planning mode before 
starting to act, reaching it in the environment, and finally pursuing another goal. This might 
exacerbate the effect of catastrophic interference because it lengthens the period of time 
elapsed between two experiences with the same goal. 

 
Chapter's outline. S. 10.2 briefly describes the test used to compare the controllers. S. 10.3 
explains how the planning controllers showed in chapter 8 and 9 have been integrated with the 
modular reactive system of chapter 7. S. 10.4 presents the results of the tests, and in particular 
shows that modularity also helps to deal with interference problems in the case of planning, 
and that the forward planner has problems dealing with multi-goals while the bidirectional 
planner does not. Finally s. 10.5 and s. 10.6 analyse the drawbacks of the modular planners 
and draw conclusions. 

10.2 Scenario: Again the Asynchronous Multi-Goal Task 

As mentioned, the task used to test the algorithms is the one illustrated in chapter 7 (cf. Figure 
7.1 for the scenario used for this task). Recall that such task requires that the simulated robot 
pursue three goals asynchronously. At the beginning the simulated robot has to pursue one 
goal from a start position. Then each time the simulated robot reaches a goal, another goal 
randomly drawn from the three goals is assigned to it until the simulation ends. 

10.3  Architectures and Algorithms 

10.3.1 Modular Reactive Components 

The components of the forward planner and the bidirectional planner are shown in Figure 
10.1. The reinforcement learning components (evaluator, actor, TD-critic) of the controllers 
are the same as for the controller illustrated in chapter 7 (but now all learning rates have been 
set at 0.02). 

The evaluator and the actor contain 6 experts each. Recall that the evaluator is based on a 
mixture of experts network, suitably modified to cope with the bootstrapping nature of the 
evaluator's learning process. The actor is based on a novel hierarchical architecture that 
repeats at two levels (gating network and single expert networks) the generation of the 
“merits” and the stochastic “winner-take-all” competition to select the experts and the actions. 
Notice that both the actor and the evaluator get as input not only the input (contrasts) about 
the current state, but also the (contrast) pattern encoding the goal. This allows the evaluator 
and the actor to yield state evaluations and actions that depend not only on the current state, 
but also on the goal. 

As usual the matcher produces the internal reward, and functions both when learning and 
when planning, while the TD-Critic produces the learning signal et. 
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Figure 10.1: The controller of the simulated robot. Networks with a bold, thin and dashed border 
implement reinforcement learning, forward planning, and backward planning respectively. Arcs and 
arrows indicate forward and backward connections that “copy” a pattern from one layer to another. 

The four and five spike stars indicate the channels respectively set open and close by the action-
planning controller when acting (vice versa when planning). Dashed arrays indicate the learning signal 

used to update the weights of the evaluator, actor and back-actor. 

 

10.3.2 Neural Modular Forward Planner 

The functioning of the forward planner is the same as in chapter 8 and 9. The fundamental 
component of this planner is the predictor (the “model of the environment”). An important 
thing to stress here is that even if here the planner has to pursue different goals, the predictor 
yields predictions on the basis of the (contrast) input yt and the selected action at only. It does 
not need the information about the goal xg (yg): the knowledge that it stores about the 
consequences of actions is independent of the particular goal pursued. As a consequence, 
while with multi-goal tasks the actor and the evaluator need information about the goal 
pursued to function, the predictor does not. Indeed, the predictor is identical in both the single 
(cf. s. 9.3.2) and multi-goal tasks. In chapter 8 and 9 we have seen that this fact is at the basis 
of the taskability of the planners proposed here. 

The “action-planning controller” controls the flow of information among the different 
components of the whole controller when it is acting, planning forward (forward planner), and 
planning forward and backward (bidirectional planner, cf. s. 10.3.3). Its functioning is the 
same as the action-planning controller illustrated in s. 9.3.2 and the parameters of the 
algorithm are set at the same values used there: Decay = 0.000001, Gain = 0.01, 
MaxConfThresh = 0.15. 

As in chapter 8 and 9, when the controller is forward planning or acting (this is true both 
for the forward planner and the bidirectional planner) the actor and evaluator function and 
learn in the same way they do when acting in the environment. We have already seen in s. 
8.3.2 the events that take place in a forward planning cycle. Here these events are slightly 
different because the actor and the evaluator take into account the goal pattern yg. The new 
situation is summarised in Figure 10.2 (refer to s. 8.3.2 for an explanation). 
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Figure 10.2: Pseudo-code for a cycle of forward planning. 

10.3.3 Neural Modular Bidirectional Planner 

In the case of the bidirectional planner the action-planning controller (illustrated in s. 9.3.2) 
generates simulated walks alternately forward from the current state and backward from the 
goal. Forward walks are executed as in forward planning. Backward walks are executed 
through the “back-actor” and “back-predictor”. 
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Figure 10.3: Pseudo-code for a cycle of backward planning. 

 
Recall from chapter 9 that the back-actor has the same architecture as the actor, and is 

used to generate actions for the simulated backward walks. Now, similarly to the actor, the 
back-actor has to take into account the goal and implement the association: yt, yg → at-1. 
Notice that the back-actor is also trained while performing forward planning, so in the case of 
the bidirectional planning controller, a line of code has to be added to the algorithm of Figure 
10.2: 
Back-Actor gets y

g
, y

t
, m

t-1
 (back-actor), a

t-1
 (actor), e

t-1
 and learns 

The modular back-predictor is a network with the same architecture as the modular 
predictor, and functioning as the back-predictor illustrated in s. 9.3.3. Before the main tests, 
the back-predictor is trained to implement the association that yields the “expected previous 
input”: yt, at-1 → xt-1. 

During the backward walks also the evaluator and actor are trained using e. The events 
that take place in one cycle of backward planning are summarised in Figure 10.3. Notice that 
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unlike the controller of chapter 9, the functioning and learning of the evaluator and actor 
depend on the goal pattern yg, while the back-predictor functions exactly as in that chapter. In 
fact, like the predictor, the back-predictor stores knowledge that does not depend on the 
particular goal pursued. 

With training the back-actor learns to yield backward walks that “escape away” from the 
goal in “straight” lines, hence creating a big area of positive evaluations around the goal. This 
area is “easily” found by the actor's forward walks that, as a consequence, progressively 
expand the area itself toward the start. At the same time the actor becomes competent in the 
whole area where positive evaluations diffuse. 

10.4 Results and Interpretation 

10.4.1 Modularity and Interference 

The reinforcement learning system, the forward planner, and the bidirectional planner were 
tested with the multi-goal task. 10 simulation were run with different random seeds for each 
controller, each for a sequence of 2000 achievements of the goals. For all the three 
controllers, 7 out of 10 runs were successful, i.e. the system converged to a quite efficient 
path from the start to the goal (cf. Figure 10.6). In these successful runs the evaluator used 
three different experts to encode three different evaluation gradient fields corresponding to the 
three goals (more precisely: in each position of the arena, and for each goal, the evaluator had 
a probability above 99% of selecting the same expert). Figure 10.4 shows the gradient fields 
relative to the three goals in one of the successful simulations. 

 

 

 

 

 

 

 

Figure 10.4: Evaluation gradient fields for two of the three goals (north-west, east, and south-west 
goals). For each goal the robot was set at 20×20 different positions of the arena, and the evaluator's 

output for that position was measured. Each cell of each graph is drawn in a position corresponding to 
the position in the arena where the evaluation was measured. The area of each cell is proportional to 

the evaluation. White cells represent positive evaluations and black cells represent negative 
evaluations. Cells with a bold border mark the goals’ positions. 

 
The 3 runs that failed (each controller did the same) did so because the evaluator 

employed the same expert to yield the evaluations related to two different goals. As a 
consequence, the evaluation gradient field had two peaks, the actor was trained to go to both 
peaks, and the resulting behaviour was dithering. This shows that in the task that is considered 
here the specialisation of the evaluator's experts for the different goals is crucial for the 
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correct functioning of the architecture (cf. chapter 7 on this. In this chapter a parameter search 
was done to avoid this problem). 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10.5: Left (grids of numbers): actor's expert with maximum probability of use in 20×20 
positions of the arena in correspondence to the three goals. The position of the goal is marked with a 

square. Each number indicates the expert with the highest probability of being selected, in the position 
occupied by the number itself. Right: the histograms summarise the frequencies of use (y-axis) of the 

6 experts (x-axis) in the whole arena. 
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In the 7 successful simulations, the actor learned to reach the goals in few steps from any 
point of the arena (see Figure 10.6, explained later). The function of the actor does not seem 
to require a precise specialisation as for the evaluator: more than one expert is used to achieve 
one goal, and the same expert is used to achieve many goals. Figure 10.5 shows the actor's 
expert that has the highest probability of being selected in 20×20 positions of the arena for the 
three goals. Clearly the actor uses different experts to handle different areas of the arena for 
the same goal (cf. chapter 7). 

10.4.2 Taskability 

For each simulation the number of actions per “success” (achievement of the assigned goal) 
was measured for each goal reached and then plotted against the cumulated number of 
successes. Figure 10.6 shows this measure for the three controllers (averaged over the 7 
successful random seeds; a forward moving average of 20 steps has also been used to smooth 
the curves. Recall from s. 7.2, that the optimal path to the goals, not considering noise and 
obstacles, is about 10 steps long). The results confirm the results previously obtained with 
single goal tasks (cf. chapter 8 and 9).  

 

 

 

 

 

 

 

 

 

Figure 10.6: Performance of the three controllers (averaged over 7 random seeds per controller; 
smoothed with a 20-step moving average). Y-axis: number of actions per success. X-axis: successes. 

 
The comparison between the performance of planning vs. reinforcement learning shows 

that planning allows the controller to reach the goals with improved efficiency from the very 
first time each goal is pursued (cf. Table 10.1): reinforcement learning takes 719 actions on 
average, the forward planner about 286 actions and the bidirectional planner about 199 
actions. The situation is similar for the second goal pursued (see the explanation below for the 
reason why the performance with the second goal is worse than the one with the first goal). 
These results show that the planners are taskable (cf. s. 5.1.3). 

10.4.3 From Planning To Reaction 

Figure 10.6 shows another interesting result. Pursuing a goal several times also improves the 
performance of the controller in the case of planning (cf. s. 8.4.2). This happens because the 
information gathered with planning and with direct experience is merged appropriately and 
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incrementally in the weights of the evaluator and actor. This is a typical strength of the Dyna 
architectures (Sutton, 1990). 
 

 Reinforcement 
learning 

Forward 
planning 

Bidirectiona
l planning 

1st goal 719 286 199 

2nd goal 1407 420 297 

Table 10.1: Number of actions taken by the three controllers to reach the first and second goal the first 
time they are assigned to them (averaged over 20 simulations run with different random seeds). 
 

10.4.4 The Forward Planner Versus the Bidirectional Planner 

As regards the comparison between the forward planner and the bidirectional planner, Figure 
10.6 shows that before convergence the bidirectional planner outperforms the forward planner 
in terms of number of actions taken to reach the goals. One reason for this, probably of minor 
importance, is that the forward planner spends more cycles planning than the bidirectional 
planner (see below). In fact recall that while planning some actions are executed to avoid that 
the simulated robot gets stuck in situations where it does not succeed in becoming “confident” 
enough (cf. the algorithm illustrated in s. 9.3.2, Figure 8.3). These actions are in addition to 
the actions that are executed when the simulated robot becomes enough confident. 

 

 

 

 

 

 

 

 

 

Figure 10.7: Cycles spent planning by the forward planner and bidirectional planner (y-axis) to 
achieve the first 36 goals (x-axis). Average over 24 simulations run with different random seeds. 

 

Another reason is that back planning focuses exploration and learning around the goal. 
Direct observation of the behaviour shows that this area, where the simulated robot has to 
move to the specific position corresponding to the goal, is a particularly difficult part of the 
task: the simulated robot engages in a kind of random walk around the goal area searching for 
the goal. The reason seems to be that when the simulated robot is very far from the goal, 
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about 50% of the moves take it towards the goal, while when very close to the goal only 
12.5% of moves (1 out of 8) takes it towards the goal. So when the controller is enough 
confident at the current state and starts to act, its actual competence for the area near the goal 
is higher in the case of the bidirectional planner than in the case of the forward planner. 
Further investigation should verify this explanation and check if this result holds for problem 
domains different from navigation. 

Figure 10.7 shows the number of planning cycles per success taken by the two planning 
controllers for the first 36 goals reached (average over 24 successful simulations out of 32 run 
with each controller with different random seeds: 8 runs out of 32 failed). Many runs have 
been executed to obtain more reliable data (and the quite regular graph shown in Figure 10.7). 
An important result is that the planning cycles fall close to 0 when the controller experiences 
the same goals several times. The explanation of this is that when the same goal is 
encountered several times, the “confidence” associated with it increases over the confidence 
threshold, so that planning is no longer required and the goal is achieved reactively. 

Figure 10.7 also shows that the bidirectional planner outperforms the forward planner in 
terms of number of cycles spent planning before reaching the goals. This happens for three 
reasons (cf. s. 0). The first reason depends on the way the two algorithms explore the model 
of the environment. The forward planner spends a lot of time searching for the goal 
unsuccessfully given that the goal is searched by a random walk, while the bidirectional 
planner “finds” the goal from the very first cycles of planning. So, in contrast to what happens 
for the bidirectional planner, the forward planner wastes a lot of planning cycles before 
starting to update the evaluations and, consequently, to update the action policy. 

The second reason is that the bidirectional planner is more efficient than the forward 
planner in propagating the evaluations backward from the goal to the other states. In fact it 
updates the evaluation of each state on the basis of the evaluation of a state that has just been 
updated (cf. Lin, 1992, and Thrun, 1992). 

The third reason is very important because it involves the different functioning of the two 
controllers with multi-goal tasks, and a problem caused by the generalisation property of 
neural networks. After enough confidence is attained and the first goal is reached, the action 
probabilities are quite biased in favour of that goal. When the goal changes, half actor's input 
pattern (the part yg that encodes the goal) is changed for each state visited (cf. Figure 10.1). 
Given that the experts are not yet specialised for the different goals and that in general the 
actor is responding to the second goal mostly with the same weights used for the first goal, the 
probabilities are still quite biased in favour of the first goal. This implies that the random walk 
used to explore the model of the environment is biased away from the second goal. Figure 
10.7 shows that the forward planner spends nearly a double number of cycles planning to 
reach the second goal than to reach the first goal, while the bidirectional planner only spends 
few cycles more. 

Simulations not reported here show that if the level of the confidence threshold is 
increased so that the number of cycles spent planning for the first goal increases before 
achieving enough confidence, this drawback of the forward planner gets worse. In fact 
planning searches around the area of the first goal, and never reaches the area of the second 
goal. In contrast, bidirectional planning forces the search around the newly assigned goals. 
This leads the evaluations, and hence the action probabilities, to change according to the new 
goal. 
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10.5 Limitations of the Modular Planners 

These results are encouraging, but the planning controllers presented have also some 
drawbacks. The forward planner and even more the bidirectional planner have a quite 
complex architecture composed of inhomogeneous neural networks. 

The functioning of both planners depends on the possibility of building a reliable model 
of the environment. When planning starts, the planners assume that the model of the world is 
sufficiently accurate, and that training the evaluator, actor and back-actor through it will 
necessarily improve their abilities to evaluate and act (cf. s. 8.5). This assumption is not true 
in general for all task domains. 

Backward planning relies on the possibility of training the back-actor to “guess” what 
action could have led to a particular state. It is not clear if this can be done within problem 
domains different from navigation. 

The experts of the modular evaluator fail to specialise in 8 simulations out of 32 run with 
different random seeds. This raises interference problems and impairs the policy learning (cf. 
s. 7.6 and 12.3 for a discussion and a possible solution to this problem). 

10.6 Conclusion 

This chapter has tested the two planning controllers presented in previous chapters with a 
simulated robot engaged in a new multi-goal stochastic shortest-path problem. In order to 
allow the architecture to cope with multi-goal tasks the evaluator, the actor and the back-actor 
components, previously implemented with monolithic neural networks, have been replaced by 
modular networks. 

The results of the test have shown that the specialisation of the evaluator's experts (one 
for each goal) and the partial specialisation of the actor (one prevailing expert for each goal) 
allows the controllers to cope with multiple goals. The other results confirmed the results 
obtained with single goal tests. The planners showed an efficiency higher than that of the 
reinforcement learning controller from the very first time a goal was pursued. With successive 
experiences the performance further improved, and the planners became “confident” enough 
and did not need to plan anymore. The bidirectional planner outperformed the forward 
planner both in terms of actions and planning cycles needed to achieve the goals, thanks to its 
capacity to focus exploration around the start and the goal and to propagate the evaluations 
quickly. Moreover, focussing around the goal has been shown to be of crucial importance 
when dealing with multiple goals because it allows breaking a wrong bias of the random walk 
search towards previously pursued goals. 

Notwithstanding these encouraging results, the planners are affected by some drawbacks 
such as the necessity to rely on a sufficiently accurate model of the environment (planning 
starts after suitably training the predictor and back-predictor), a high complexity of the overall 
architecture, and an imperfect functioning of the evaluator's gating network that prevents a 
correct specialisation of the neural “experts”. 
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11 Coarse Planning 

11.1 Introduction: Abstraction, Macro-actions and Coarse Planning 

Problems Tackled. This chapter addresses the problem of how implementing abstract 
planning with neural network systems. The benefits of abstraction are well known in the 
classic artificial intelligence literature: fast exploration of alternatives, creation of large plans 
without incurring in combinatorial costs, possibility of planning on the basis of a model of the 
environment that ignores the details (cf. Sacerdoti, 1974, and several works in Allen et al., 
1990). Is it possible to exploit some of these benefits within the neural planners implemented 
in this thesis? This chapter attempts to give a first answer to this question within the problem 
domain of navigation. It also shows that discounted reinforcement learning has some 
problems in handling the long periods of time typically involved with abstract planning. 
 
Overview. In order to tackle the problem of abstraction with neural systems, the forward and 
backward neural planners introduced in chapter 8 and 9 have been used to carry out planning 
on the basis of “macro-actions”, defined as sequences of identical “primitive-actions”, e.g. 
“north-north-north-north”. The macro-actions have first been used to train the predictor, and 
then have been used to execute planning. This form of planning, based on this special (simple) 
kind of macro-actions has been called “coarse-planning” for ease of reference. As for the 
other neural planners proposed in the previous chapters, the planning process has been used to 
improve the evaluations and the policy of the controller. Then the policy has been used to act 
at the level of primitive-actions. 

A key issue of abstraction is the possibility of dealing with long periods of time. In 
chapter 6 it has been shown that discounted reinforcement learning may have some problems 
handling long periods of time because the optimal evaluations for states far from the goal are 
near zero. With the presence of noise, the gradient field over such states does not give enough 
information to create the policy. The fact that these problems have been encountered again 
while running the simulations of this chapter related to abstract planning, confirms their 
relevance. In the following sections first the effects of the problem on abstract planning are 
shown. Then a solution is proposed and implemented based on the use of different discount 
coefficients for planning and for acting. Unluckily, this solution is not fully satisfactory 
because it compromises the useful complementarity between planning and reactive behaviour 
of the controllers proposed here and highlighted in the previous chapters. 

 
What is New and Related Literature. The idea of macro-actions made up by a certain 
number of actions of the same kind, and their use for abstract planning, is new (Baldassarre, 
2001d). This idea is closer to the idea of “abstract operators” of classical artificial intelligence 
planning (cf. s. 2.4.3) than to the idea of options as sub-policy of the framework of 
reinforcement learning and options (Sutton et al., 1998; cf. s. 13.2.7). The issues related to the 
different discounted rates have been developed within the framework of reinforcement 
learning and options, but the analysis of the “discounted reinforcement learning delay 
problem” within abstract planning is new. 
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Lin (1993) presents a work related to macro-actions. This work studies a simulated robot 
that has to move from one room to another room of an office. The simulated robot is first 
trained to develop separate simple policies as “follow the wall”, “enter the door”, etc. on the 
basis of simple primitive-actions. Then all these building-block policies are treated as single 
macro-actions by a higher-level reinforcement learning procedure that is trained to trigger 
them in order to solve a path-finding problem. The results show the considerable advantages 
that this technique has versus learning the policy on the basis of the primitive-actions. Even if 
this work is different from the simulations presented in this chapter because it does not deal 
with planning, the idea of applying reinforcement learning to “hardwired” macro-actions (this 
chapter) or sub-policies (Lin, 1993) is common to the two. 

Nehmzow et al. (1991) have proposed an experiment where a robot, following a wall 
through a pre-programmed behaviour, uses information about the commands sent to the 
motors and their duration to recognise locations in the environment through a self organising 
neural network (Kohonen, 1982). This is an interesting form of indirect abstraction with 
regards to the rich sensory information: it is very compact but still sufficient to accomplish the 
location recognition task. Tani and Nolfi (1999) use self-organising neural networks to 
abstract information with regards to perception. Interestingly, they also exploit signals 
repeated over long periods of time (in this case sensory signals) to enhance abstraction. 

Before passing to consider the details of coarse planning, it is interesting to review the 
work of McGovern et al. (1997), because it presents some results that are useful in 
interpreting the results of this chapter. The work of McGovern et al. (1997) has been 
developed within the framework of reinforcement learning, options and macro-actions (cf. s. 
13.2.7). It presents the result of an interesting empirical research directed to investigate the 
advantages and disadvantages of reinforcement learning controllers based on “macro-
actions”. The first result shown by the authors is that macro-actions influence the exploratory 
behaviour of the controller such that more relevant states are visited more often. The second 
result is that macro-actions allow the system to propagate rewards more rapidly. 

 
Chapter's Outline. S. 11.2 presents the scenario of simulation and s. 11.3 illustrates the 
architecture and functioning of the “coarse planner”. Then two groups of results are presented. 
The first group of results shows the functioning of coarse planning and the advantages that it 
produces vs. planning at a primitive level (s. 11.4.1 to s. 11.4.3). The second group of results 
shows how different discount coefficients, used for planning at a coarse level and for acting at 
a primitive level, affect the evaluations, the quality of action, and the speed of learning (s. 
11.4.4). Finally s. 11.5 and s. 11.6 analyse the drawbacks of the coarse planner and draw 
conclusions. 

11.2 Scenario of Simulations: A Simplified Navigation Task 

The environment used in the simulations is the simple environment considered in s. 6.2 (cf. 
Figure 6.1). This scenario is reproduced in Figure 11.1 for convenience. This figure also 
shows the goal used in the simulations. This simple environment has been used to simplify the 
resulting gradient field and ease the interpretation of the results (see below). 

The simulated robot is the usual one (cf. s. 6.2). The size of the steps of the simulated 
robot has been one of the parameters investigated with the simulations. The simulated robot's 
diameter has always been set at the same size of the step's length. Notice that while the 
simulated robot’s step size is very important, the simulated robot’s diameter has only 
graphical effects (however, the diameter of the robot affects the way one thinks about the 
relative size of the robot and the arena). Perception and action are affected by the usual noise. 
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The simulated robot's task is to reach the goal position from the start position and then from 
other positions chosen randomly. 

 
 

 

 

 

 

 

 

 

Figure 11.1: Left: the scenario of the simulations containing the goal (star), four landmarks (black 
circles), the scope of the simulated robot's 50 visual sensors (delimited by the rays), the simulated 
robot at the start position (white circle at origin of rays). Right, from top to bottom: the simulated 

robot’s activation of the visual sensors at the start position (the position occupied by the robot in the 
graph on the left), its re-mapping into contrasts, and the goal (contrasts). 

11.3 Architectures and Algorithms: Coarse Planning with Macro-actions 

The controller used for the experiments of this chapter is the forward planner investigated in 
chapter 8 and reported in Figure 11.2 for convenience. 

 

 

 

 

 

 

 

 

 

 

Figure 11.2: The controller of the simulated robot. Networks with a bold and thin border implement 
reinforcement learning and planning respectively. Arcs and arrows indicate forward and backward 
connections respectively. These “copy” a pattern from one layer of units to another. The four (five) 
spike stars indicate the channels set open (close) by the action-planning controller when acting (vice 
versa when planning). Dashed arrays indicate the learning signal used to update the weights of the 
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The parameters are set at the same values used in chapter 8 with the exception of the 
learning rates of the actor and critic, set at 0.05 in the simulations of this chapter, the Decay 
and Gain parameters of the planning algorithm, set both at 0.00001, and the MaxConfThresh 
parameter, set at 0.15 (see below for the justification of these choices). 

 

 

 

 

 

 

 

 

Figure 11.3: Left: The relationship between a macro-action and the primitive-actions that make it up. 
Right: A possible path simulated while planning and the path that would be followed while acting in 

the environment. 

 
The key difference between the functioning of the planner used in this chapter and the 

functioning of the planner of chapter 8 is that the “granularity” of planning is coarser than the 
granularity of the actions' execution. In particular (cf. Figure 11.3): 
• Planning at a coarse level is obtained by training the predictor in a way different from the 

one employed in chapter 8. In the latter case the predictor was trained to predict the input 
pattern following the execution of a single (primitive) action in correspondence to the 
current input pattern. Now the predictor is trained to predict the input pattern that follows 
the execution of a macro-action. A macro-action is made up by a sequence of a certain 
number of primitive-actions (2, 4, 10 in the simulations reported here). The primitive-
actions that make up a macro-action are identical. An example of macro-action that is 
made up of 4 identical primitive-actions is this: “north-north-north-north”. 

• When the controller is planning and the actor selects an action (e.g. “north”), this action 
is “executed” within the predictor and its effect results in a macro-action's effect, i.e. in 
the prediction of the effects of a long movement. This happens because the predictor has 
been trained in terms of macro-actions. 

• When the controller is acting in the environment, the actor selects an action (e.g. “north”) 
but now the effects of this selection result in a small movement in the environment 
corresponding to the execution of the a primitive-action. 

As we shall see, the experience accumulated by the evaluator and actor while planning at a 
coarse level can be used to act at a fine level. This is possible because of the generalisation 
property of neural networks and because of a property of navigation tasks (in particular 
navigation tasks in open spaces) for which the direction of optimal primitive-actions and 
optimal macro-actions often coincide (see below). 
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11.4 Results and Interpretation 

11.4.1 Reinforcement Learning at a Coarse Level 

The first simulation tested the performance of the controller running in reinforcement learning 
mode (the confidence threshold was fixed to a low value, 0, so the controller never planned). 
The step of the simulated robot was set at 0.025 (in all the previous chapters the step 
measured 0.05). The optimal path to the goal, not considering the negative effects of noise, is 
about 20 steps (= 0.5/0.025). The simulated robot was set at the start, and had to learn to reach 
the goal. When the simulated robot reached the goal it was set at a new random location in the 
arena, and had to reach the goal again from there. This was done until 60,000 cycles had been 
executed. Figure 11.4 shows the performance of the controller, measured as the number of 
cycles per success. This and all the graphs reported in this chapter refer to an average over 10 
simulations run with different seeds of the random number generator. The performance 
improves from about 8000 to about 120. The graph also reports the performance, equal to 
7712, of the simulated robot following a random walk (it was obtained setting the learning 
rates of the critic and actor to 0). 

Other simulations were run to test the learning capabilities of the reactive components at 
different levels of the granularity of actions execution given the scenario’s dimensions (1 by 
1). This was done by changing the dimension of the simulated robot's step. In particular, in 
order to interpret the results of the simulations shown below, it was important to evaluate the 
learning capabilities of the reactive controller when its step was small in comparison with the 
arena/landmarks. 

 

 

 

 

 

 

 

 

Figure 11.4: Performance of the controller in the reinforcement learning mode (y-axis) plotted against 
the actions executed (x-axis). Average over 10 runs of the simulation repeated with different random 

seeds. 

 
The results show that if the step's size is reduced to 0.0125, i.e. it is divided by 2 with 

regards to the previous simulation (where it was 0.025), the reinforcement learning algorithm 
is not capable of learning anymore. The reason is that the emergent evaluations' gradient field 
is rugged and has several local peaks (see below for some examples). The consequence is that 
the actor tends to learn to take the robot to local peaks. The evaluations' gradient field is 
rugged because of the simplicity of the sensory system and the neural architecture used for the 
evaluator (cf. s. 6.4.2, 6.4.3, and 6.4.5). Analogous negative results are obtained with a step 
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smaller than 0.0125. With a step measuring 0.05 or 0.1 the controller learns properly. The 
reason why training is successful with long steps (0.025, 0.05, and 0.1) is that they allow the 
simulated robot to “jump” away from the local peaks and to reach positions with differences 
in the evaluations that on average tend to reflect the actual distances from the goal. 

11.4.2 The Advantages of Coarse Planning 

The next two simulations have been run to test the controller's planning capabilities when 
doing coarse planning. The predictor was trained before this test while the simulated robot 
was exploring the environment with a random walk lasting for 100,000 cycles. As mentioned 
the key point here was that the random walk was made up by sequences of a given length of 
primitive-actions. In particular 2 primitive-actions with the same direction (e.g. “north-north”) 
were used in the first simulation, and 4 primitive-actions (e.g. “north-north-north-north”) were 
used in the second simulation. Consequently, the total size of the macro-actions was 0.05 and 
0.1 respectively for the two simulations. The predictor was trained to predict the 
consequences of these kinds of macro-actions; i.e. the teaching output was the one at the end 
of the execution of the 2 or 4 action sequences. In particular, when a macro-action was 
executed the predictor's expert of the corresponding primitive-action was trained. For example 
if a “north-north” macro-action was executed, the expert corresponding to the “north” 
primitive-action was trained. If during the execution of the 2 or 4 action sequences the 
simulated robot hit the edge of the arena, the input pattern was used as teaching output. 

 

 

 

 

 

 

 

 

Figure 11.5: Performance of the coarse planner with two levels of coarseness. Y-axis: number of 
actions (or planning cycles) per success for the two levels of coarseness (2 and 4 primitive-actions). X-

axis: cumulated actions. All the curves are averaged over 10 runs repeated with different random 
seeds. 

 
Figure 11.5 shows the results of the two simulations, with the two different predictors 

(trained with 2 or 4 step macro-actions respectively) and run with the same modalities as the 
previous reinforcement learning simulation. Notice that, given the way the predictor was 
trained, planning took place at two different levels of coarseness in the two simulations (2 and 
4 primitive-actions per macro-action). The graph reports both the number of actions (one per 
simulation cycle) per success, and the number of planning cycles (eventually many per 
simulation cycle) per success. Recall that the value of the Decay and Gain variables of the 
planning algorithm were set at the same value, 0.00001. This was done so that the number of 
action executions and planning cycles had the same average and the analysis of the results 
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was simpler. This is also the reason why the acting and planning plots overlap most of the 
time. The initial difference between them is caused by the fact that the initial value of the 
variable MaxConfThresh was set at 0.15 (slightly higher than the initial average actions' 
probability equal to 0.125) to allow the iterative deepening planning algorithm to reach a 
depth of about 50 before the simulated robot started to move. To maintain the consistency of 
the discount factor between the primitive and macro level (cf. McGovern, 1998, and s. 13.2.7) 
while planning a value of 0.9025 (≈ 0.952) and 0.8145 (≈0.954) was used respectively in the 
two simulations. 

 
Why Coarse Planning Works. A first fact that is apparent from Figure 11.5 is that the policy 
learned while planning at a coarse level is appropriate for acting at a fine level (this is 
confirmed by the simulations shown below, where the controller updates the evaluator and 
actor's weights only while planning). This happens for the following reasons. 
• In navigation tasks like the one shown here (especially if in open-space) the directions of 

the optimal macro-action and of the optimal primitive-action coincide. Here “optimal” is 
intended as the macro-action or primitive-action that take toward the goal following a 
direct path. As a consequence, if while planning the actor learns to select a particular 
macro-action (e.g. “north-north-north-north”) at a particular position, the primitive-action 
with the same direction (e.g. “north”) has a high chance of being adequate. Once the 
primitive-action is executed and a new position is reached, the actor can produce another 
selection that again is likely to be suitable both for the macro and primitive level. If at a 
given position the optimal macro-action and the primitive-action differ, the following 
time step the error will be corrected by the policy that is suitable to deal with the most 
likely outcomes of action execution. 

• The use of neural networks allows the controller to generalise. This means that the 
controller is capable of yielding appropriate evaluations and action probabilities when 
encountering positions never met previously, on the basis of the exploration of similar 
positions while planning. This property of neural networks is also useful for planning and 
acting at the primitive level (cf. chapter 6), but now it is even more important. In fact with 
coarse planning the number of steps spent planning is less than with standard planning 
and so is the number of states visited (in simulation mode) before acting. The simulated 
experience accumulated by visiting this limited number of states is sufficient because it is 
extended to non-visited but similar states by generalisation. 

• Notice that although the area that covers the positions recognised as goal could be small, 
this does not undermine coarse planning thanks to actions' noise. In fact even if planning 
takes place at a coarse level, it can still reach all the points in the arena because of the 
actions' noise. In the absence of noise, the simulated robot would visit few points on a 
fixed grid, eventually missing the goal area. 

 
The Strength of Coarse Planning. The second fact that emerges from Figure 11.5 is that 
planning at the higher level of coarseness causes an improvement of the performance. There 
happens for two reasons. 

First, exploration with coarse planning covers the whole arena in less time, i.e. less steps 
are taken to reach the goal in planning mode. This is shown in Figure 11.6. Here the simulated 
robot, set at the start, executes 1000 actions selected randomly. The experiment is repeated 
three times with different size of the step: 0.025, 0.05, and 0.1. From the graphs it is apparent 
that a bigger step improves the exploration of the environment. 

Second, the evaluations are updated more quickly. In fact during coarse planning the 
evaluations of states are updated on the basis of the evaluation of a state 2 or 4 steps away. 
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Figure 11.6: Positions occupied by the simulated robot moving 1000 times with random actions from 
the start. The steps measure 0.025, 0.05, and 0.1 respectively for the three graphs. The star indicates 

the position of the goal. 

 
In order to compare them, Figure 11.7 presents the plots of the reinforcement learning 

and planning simulations (only plot of action cycles) in the same graph. The plots have been 
smoothed with a moving average over 3000 cycles to ease the comparison. Planning clearly 
shows a better performance. Even in terms of total number of cycles (planning cycles plus 
action cycles) planning shows its superiority. This can be seen by multiplying by 2 the plots 
of planning on the vertical axes (recall that given the settings of the parameters, the number of 
cycles spent planning is roughly the same as the number of cycles spent acting). 

 

 

 

 

 

 

 

 

 

Figure 11.7: Comparison between reinforcement learning and planning at two levels of coarseness. Y-
axis: number of actions per success, smoothed with a moving average over 3000 cycles. All the curves 

are averaged over 10 runs repeated with different random seeds. X-axis: cumulated actions. 

 

11.4.3 Predicting at a Coarse Level 

To complete the picture regarding prediction, other simulations have attempted to train the 
predictor with steps smaller than 0.05 (0.025, 0.0125, etc.) and have shown that this is not 
possible. In fact in these cases the predictor predicts a pattern similar to the input pattern. This 
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is because after each action the sensory input changes only slightly. Instead the predictor 
works well with bigger macro-actions made up of 8 primitive-actions in sequence. Table 11.1 
summarises the outcome of the training of the predictor at different levels of planning 
coarseness, and reports the error (measured as (Σi[di - oi]2 /n)1/2, where di and oi are the desired 
and effective activation of the n output units) averaged over the last 5000 cycles obtained at 
the end of training. 

 
Level of coarseness; 
size of macro-action 

Error of prediction after 
100000 training cycles 

Outcome of training of 
predictor 

0.5 ; 0.0125 0.1903 failure 
1 ; 0.025 0.1873 failure 
2 ; 0.05 0.1967 success 
4 ; 0.1 0.2075 success 
8 ; 0.2 0.2350 success 

Table 11.1: Outcome of training of the predictor at different levels of coarseness. 

 

11.4.4 Coarse Planning, Discount Coefficient and Time Limitations of Reinforcement 
Learning 

Now the results of a different set of simulations involving planning are shown. They are 
directed to understanding the relationship between level of coarseness, discount coefficient 
and learning speed. In these simulations the controller does not learn while acting: the actor 
and evaluator's weights are updated only while (coarse) planning. This allowed the 
exploration of the effects of different discount coefficients during coarse planning, without 
having problems of consistency with the discount coefficient used at the acting level. The 
results suggest the idea that coarse planning should be independent of the primitive-action 
level in terms of discount coefficient used: this should be tuned with the coarseness of 
planning, not with the coarseness of action. 

 

 

 

 

 

 

 

 

Figure 11.8: Planning with different discount coefficients and planning coarseness corresponding to a 
0.05 step. Y-axis: number of actions per success. The curves are averaged over 10 runs repeated with 

different random seeds. X-axis: cumulated actions. 

 
Figure 11.8 and Figure 11.9 show some simulations that compare, respectively for the 

0.05 and 0.1 step levels of coarseness of the planning cases seen previously, the performance 
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of the system with a discount coefficient reduced according to the size of the macro-actions 
(0.952 and 0.954 respectively, in accordance with the theory of options and macro-actions, cf. 
s. 13.2.7) versus the performance with a discount coefficient of 0.95 (independent of the 
coarseness). It is apparent from these graphs that a discount factor suited to the level of 
coarseness used brings an improvement in the performance. 

 

 

 

 

 

 

 

 

Figure 11.9: Planning with different discount coefficients and planning coarseness with step 0.1. Y-
axis: number of actions per success. The curves are averaged over 10 runs repeated with different 

random seeds. X-axis: cumulated actions. 

 
A further simulation with coarseness of 8 steps per macro-actions (with a macro-action 

measuring 0.2) and a discount coefficient set at 0.95, showed that this principle has an upper 
limit: the system learned but was quite unstable. The reason for this instability can be 
understood observing Figure 11.10. This figure reports the gradient fields of the evaluations 
obtained in the two previous simulations (2 and 4 step macro-actions and a discount 
coefficient set at 0.95) and the one being discussed here (8 step macro-action). The second 
graph reported in the figure shows that almost all evaluations are near the maximum level (i.e. 
1) and have a very shallow gradient, while the third graph shows high evaluations without a 
defined gradient. 

 

 

 

 

 

 

 

Figure 11.10: From left to right: gradient field of evaluations with planning at three coarseness levels 
(macro-actions of 2, 4, and 8 steps). The simulated robot has been set at 20×20 different positions of 

the arena, and the evaluation yielded by the evaluator for each of them has been measured. The size of 
the white cells is proportional to the evaluation given. The big white cells scattered irregularly in the 

graphs are caused by temporary noise of sensors. 
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Figure 11.11: Performance with primitive step 0.005 and coarse planning step 0.05 (10 primitive-
actions) with two different discount coefficients (0.95 and 0.9510). Y-axis: number of actions per 

success. The curves are averaged over 10 runs repeated with different random seeds. X-axis: 
cumulated actions. 

 
In order to further support the idea that the discount coefficient should be tuned with the 

coarseness of planning, another simulation has been run where the primitive-actions' size and 
simulated robot's diameter were 0.005, and the macro-action used for coarse planning was 
made of 10 primitive-actions (a total size of 0.05). The simulations were run two times with 
different discount coefficients: 0.95 and 0.5987 ≈ 0.9510 (in accordance with the primitive 
level action) respectively. The results (Figure 11.11) show that the first discount coefficient 
results in a good performance, while the second discount coefficient makes learning and 
behaviour quite “unstable” (cf. Figure 11.12 shows the path followed by the simulated robot 
at the end of training in the two situations). 

 

 

 

 

 

 

 

 

 

Figure 11.12: Paths followed by the simulated robot with coarse planning and different discount 
coefficients (left graph: 0.95; right graph: 0.9510). The stars indicate the position of the goal. The 

arrows indicate the tiny simulated robot in the arenas: the size of the simulated robot gives an idea of 
the dimension of the robot’s step with regards to the arena. 
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Figure 11.13: Evaluation gradient field with primitive-action steps measuring 0.005, coarse planning 
of 10 steps, and different discount coefficients (left graph: 0.95; right graph: 0.9510). The black cells 

indicate negative evaluations. Big white cells scattered in the graph are caused by noise of the sensors. 

 
The reason for this instability is that the primitive-actions have a very fine granularity, so 

the areas far away from the goal should receive a very small evaluation because of the decay 
coefficient (100 steps away from the goal, the evaluation should be equal to 0.95100 ≈ 
0.005920). When evaluations are very close to 0 their differences become extremely small. 
Now, the TD-error, on the basis of which the evaluator and actor are trained, is computed as 
the difference between the evaluations of two contiguous positions. As a consequence if noise 
affects the sensors and function approximation is used to approximate the evaluation and 
policy functions, the TD-error signal becomes completely overwhelmed by noise and learning 
cannot take place in a proper manner (cf. also s. 6.5 on this). Figure 11.13 demonstrates that 
this is the case for the two simulations we are examining. The figure shows the evaluation 
gradient fields relative to the two simulations. In the case of a discount coefficient equal to 
0.9510 the nature of the gradient appears to be very irregular and close to 0 for positions far 
from the goal. This disrupts the TD-error learning signal (this should also be the explanation 
for the instability observed in the simulation illustrated in Figure 11.11). Overall these 
simulations suggest that a discount coefficient suited to the level of coarseness of actions 
improves the functioning of reinforcement learning algorithms. 

11.5 Limitations of the Neural Coarse Planner 

Coarse planning has some limitations. The way coarse planning has been implemented here 
can be applied only to problems domains with certain properties (cf. the conclusion for an 
attempt to define these properties). 

As we have seen, in open-space navigation tasks the optimal primitive-action and the 
optimal macro-action corresponding to a given position share a common direction most of the 
times. This assumption is not true in general. For example it would be interesting to analyse to 
which extent this assumption holds within a more complex navigation tasks, e.g. one 
containing obstacles. 

When coarse planning uses a discount coefficient different from the one used at the 
action level, the evaluations developed at the two levels are different, so it is not possible, 
within the framework about options and macro-actions presented in s. 13.2.7, to use them in 
synergy. This weakens the opportunity to exploit the advantages rendered by the use of 
different discount rates at different levels of coarseness. 



 

 

 

11.6 Conclusion 

Coarse Planning. This chapter has presented an empirical investigation of the problem of 
planning with macro-actions and acting with primitive-actions. A significant fact apparent 
from the simulations is that planning at a level coarser than the level of action execution is 
possible and useful. The main problem in doing so is to find a way to allow the two levels to 
interface. Given a plan developed at a coarse level, how can its details be specified so as to 
implement it at a fine level? Similarly, given some experience accumulated by acting at the 
fine level, can it be exploited to plan at a coarse level? 

Future research will focus on the possibility of using the same controller with navigation 
tasks with obstacles, and on the possibility and utility of using coarse planning for other 
“linear” problem domains. 
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effects of the single component primitive-actions. For example this could be the case of a 
two-joint robot arm if the macro-action is made of few primitive-actions (cf. Figure 11.14). 

What should be done when we have problem domains that do not allow us to build 
macro-actions by simply assembling sequences of primitive-actions of the same kind? A first 
answer is given by planning based on logical representations (e.g. Sacerdoti, 1974; cf. s. 
2.4.3). Unfortunately we have seen that there are a number of difficulties that make it 
impossible to adopt the principles developed in this area of research to design neural network 
planners (cf. s. 2.3.3). 

A second possible answer is given by the literature about abstraction and options (that 
can be applied to Dyna architectures as well; cf. review in s. 13.2.7; see Sutton et al., 1998). 
Here the solution is to consider a macro-action (option) as a policy capable of dealing with a 
certain number of states. As has already been observed, the research in this field is quite new, 
and few results have been obtained so far. 

A last observation on the issue of abstraction is that this chapter has focussed on forward 
planning only. However, it is straightforward to extend the mechanisms we have explored 
here to the bidirectional controller analysed in chapter 9 and 10. 

 
Discount Coefficient and Time Limitations of Discounted Reinforcement Learning. The 
simulations of this chapter have also shown another important result: the opportunity to use 
different discount coefficients at the coarse and primitive level. In particular they have shown 
that the choice of the discount coefficient should be done on the basis of the size of the space 
faced by coarse planning itself, and not on the basis of the level of primitive-actions. As we 
have seen, this can help the process of planning, but unfortunately it also opens again the 
problem of interfacing planning and action. 

It is important to notice that the problems caused by a discount coefficient that is not 
adequate for the level of coarseness chosen depends on the problems that affect discounted 
reinforcement learning when long periods of time are considered. These problems have been 
introduced in chapter 6 (cf. s. 6.5). These problems implied that the (optimal) evaluations of 
states far (in time and state space) from the goal are very close to zero. If the environment and 
the perceptual apparatus of the robot are noisy, the gradient field over these states becomes 
completely noisy and cannot guide the policy updating. The experiments of this chapter 
confirm, within the new context of abstract planning, that these problems can impair 
discounted reinforcement learning severely. These problems are even more important for 
abstract planning since it, for its nature, tends to be applied to long courses of action. 
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12 Conclusion and Future Work 

12.1 Conclusion: What Have We Learned from This Research? 

The goal of this thesis was to implement and investigate predictive planning controllers 
implemented with neural networks, inspired by the Dyna-PI architecture, and capable of 
controlling a simulated robot in noisy environments. Pursuing this goal, the thesis has 
delivered insights that can be organised in six groups. These insights are highlighted and 
discussed in the following sections, and then summarised in s. 12.2. 

12.1.1 Ideas for Neural-Network Reinforcement-Learning Planning 

Part 1 has searched for principles and ideas proposed by blind search, heuristic search and 
planning that could be applied to neural-network planners inspired by the Dyna-architectures. 
The following ones have been isolated: 
• Iterative deepening exploration of the model of the environment. If one has to plan to 

reach a goal in a large state space, and if the outcome of the actions' execution is not fully 
predictable (stochastic environment), the goal can be searched by executing searches in 
depth. To avoid to get stuck in dead-ends or areas of state space too far from the current 
state it is necessary to “cut” the search to a given depth, and to iteratively start again from 
the current state. These ideas underlie iterative deepening search, and are applicable to 
any planner based on the “exploration” of a model of the environment. 

• Bidirectional exploration from the start and the goal to focus the evaluations’ updating. If 
one has the goal state and knows that the problem domain studied allows backward 
search, the strategy of the previous point can be enhanced by searching both from the start 
and from the goal in parallel. 

• Limits of the concept of policy (universal planners) and need for focussing. The debate 
on universal planners is very useful to highlight a crucial limitation of the concept of 
policy, namely the requirement to be defined for every possible state. The solution to this 
problem is to have partial policies, more accurate for the states that one is more likely to 
visit while executing the actions. 

• Importance of the balance between the accuracy of the partial policy (conditional 
planning) and the possibility of re-planning. If planning is possible, why should we think 
about all the possible outcomes of actions' execution in advance? It is better to think about 
what to do for the states that are more likely to be encountered and to re-plan when 
necessary. This intermediate strategy, “partial policy for the states likely to be visited + 
re-planning when necessary”, can be exploited by neural network planners. 

The final chapter of part 1 has presented two “unified views”. The first one has tried to isolate 
the essential characteristics of learning of behaviour and taskable planning. In particular it has 
underlined that taskable planning consists in the reorganisation of “behaviours” through a 
search of their possible combinations (action sequences/policies), on the basis of their 
capacity to predict the consequences of their execution, in order to achieve a goal (taskability 
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in a strong sense). It has also shown that learning of behaviour requires a reward function to 
train the system, and a special “motivational” signal to specify the goal to achieve (taskability 
in a weak sense). Even if a system can do planning without being taskable in a strong sense, 
strong taskability is probably a fundamental element for planning. In fact it renders planning 
flexible and capable of reaching a new goal with improved efficiency from the first time it is 
pursued, as compared to reactive behaviour. On the basis of this analysis it has been 
concluded that dyna-PI is not taskable in a strong sense. This analysis was necessary because 
when building planners with neural networks it is difficult to trace a clear boundary between 
learning to achieve multiple “desired” states and planning to achieve goals. 

The second unified view has shown that the majority of the neural planning controllers 
proposed in literature is based on some form of evaluation gradient field. On one side this has 
positive effects for neural planning since neural networks are suitable to implement evaluation 
functions. On the other side it raises the question about the possibility of building neural 
network planners based on different principles. We have seen that STRIPS planning, using a 
different mechanism, “assembles” sequences of actions that lead to the goal on the basis of 
the (logical) matching between their preconditions and consequences, and a search of their 
possible combinations. Is it possible to find a neural equivalent of this mechanism? A 
speculative hypothesis about how to do it, could be the following one. Reciprocal activation 
and inhibition between clusters of units, where each cluster corresponds to a macro-action, 
could substitute the “matching” between the preconditions and consequences of actions. A 
mechanism that brings the activation of the network of clusters to converge towards a 
maximum level by “trying” different combinations of clusters (similarly to simulated 
annealing?) could substitute the “search” process. 

12.1.2 Landmark Navigation, Reinforcement Learning and Neural Networks 

The implementation of reinforcement learning with neural networks, applied to landmark 
navigation tasks, has produced interesting results. It is well known that reinforcement learning 
needs some kind of function approximation to be used for robots' control (e.g. Sutton and 
Barto, 1998, p. 193). The experiments of Chapter 6 have confirmed that neural networks are a 
powerful function approximation device that can be used for this purpose. In particular the 
experiments have shown the kind of generalisation that arises from the sight of the landmarks 
in particular directions with respect to the simulated robot. 

The controllers designed and implemented in this research have been tested with a 
landmark navigation problem. Chapter 6 has shown that generalisation speeds up learning, but 
also that it can exacerbate the “perceptual aliasing” problem. The simulations have shown that 
for navigation path-finding tasks this problem is particularly impairing if it affects two or 
more positions one of which is the goal. In this circumstance the evaluation of the positions 
different from the goal, but similar to it, tend to be higher than they should be, and to “attract” 
the simulated robot. 

12.1.3 A New Neural Forward Planner 

Taskability, given for guaranteed in the classic artificial intelligence planning literature (cf. 
Allen et al., 1990), relies on general knowledge stored in a “model of the environment” that 
can be used to pursue different goals (s. 5.1). The basic Dyna-PI architecture is not taskable. 
In fact it requires a model of the environment composed of two parts: one about the 
consequences of actions and one about the rewards. In order to build the second component of 
the model, the controller needs to reach the goal several times (or alternatively this component 
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of the model has to be furnished by the user/designer). This is the reason why the Dyna-PI 
architecture has been used to speed up learning, but not to implement “genuine” predictive 
planning (e.g. Sutton, 1990; Lin, 1992). 

In order to avoid this problem a new taskable neural planner, inspired by the Dyna-PI 
architecture but different from it, has been implemented (“neural forward planner”). The most 
interesting aspects of this controller can be described as follows: 
• The part of the model of the environment relative to rewards has been eliminated with a 

double choice. First, the applicability of the new controller has been restricted to 
“stochastic path-finding problems” with one goal, a subset of the “reinforcement learning 
problems”. This has made it possible to have only one state with a positive reward (the 
goal), while all the other states have reward 0. Second, a “matcher” has substituted the 
component of the model related to rewards. The matcher is a neural network capable of 
generating a reinforcement signal by comparing the goal with the current input pattern. 
This choice represents an important departure from the reinforcement learning approach 
from a theoretical point of view. 

• The second component of the model of the environment, the state transition function, has 
been implemented with a neural network, the “predictor”. The predictor is capable of 
autonomously building a model of the environment through experience. This is an 
important difference in comparison to the traditional artificial intelligence planners where 
the model of the environment is given to the system a-priori (cf. s. 4.5 for some other 
examples where the model of the environment is learned). In fact it can be used to 
enhance the autonomy of intelligent agents. 

• The predictor has the capacity to recover from noise when a long sequence of predictions 
is generated (“mental walks”). This capacity is based on an interesting mechanism: the 
images corresponding to states of the environment tend to be “attractors” for the 
predictor's output. Further investigation is needed to test the robustness of this principle 
that is so important for a core function of the planners presented here, the generation of 
long sequences of predicted future states. 

• The prediction capacity of the predictor can be enhanced by using hardwired modularity, 
where each “expert” module is specialised in predicting the consequences of the 
execution of one specific action. This principle is important since any powerful hetero-
associative neural network capable of mapping states into states can be used to implement 
the predictor. This principle can be applied within any controller that uses a limited 
number of actions (cf. also Lin and Mitchell, 1992, on this). 

• The forward planner uses a new mechanism to find a balance between “conditional-
planning” and “re-planning” (cf. s. 2.4.4). This mechanism relies on the “confidence” that 
the controller has in action, measured as the highest of the actions' probabilities. The 
controller plans when the confidence is below a certain threshold and acts when it is 
above the threshold. The problem of when acting and when planning has been shown to 
be a crucial problem for controllers that incorporate both functions. 

• The process of planning is controlled by an algorithm that executes a number of forward 
explorations of the model of the environment with increasing depth. At the beginning 
these searches follow a random walk, then they become biased toward the goal. This 
method is inspired by the idea of “trajectory sampling” proposed in Sutton and Barto 
(1998, pp. 246-249; cf. s. 3.4). The algorithm is new in that it regulates the length of the 
search so as to: (a) avoid that the planning process gets stuck in dead-ends; (b) focus the 
exploration on the critical areas around the start, the goal, and between them. 

• Controllers for robots often use different types of knowledge representation to execute 
planning and to act reactively (e.g. Arkin, 1989; Gatt, 1992), for example they use 
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STRIPS-like representations to plan and numerical functions to act (cf. Arkin, 1998, for a 
review). This approach raises the difficult problem of creating a suitable interface 
between the “deliberative” and the “reactive” components of the system (Arkin, 1998, p. 
234). The controllers implemented here follow a different approach: both the deliberative 
and reactive layers function on the basis of numerical representation and processing of 
them. For example the predictor, the core component of the planning process, works on 
the basis of neural activation patterns (“images” of the environment). Few other planning 
controllers share this feature (cf. s. 4.5 and 2.6 for some examples). This topic touches 
issues as the “symbol grounding problem” and the symbolic/subsymbolic representation 
problem, long debated in the literature (e.g. cf. Harnad, 1990; Harnad, 1993; Sun, 2000). 
Even if these issues are interesting, they have been avoided because outside the scope of 
this thesis. 

The neural forward planner represents an important departure from the original Dyna-PI 
architecture and from the traditional artificial intelligence planners, and hopefully this thesis 
has succeeded in showing its potentialities and limitations. 

12.1.4 A New Neural Bidirectional Planner 

The neural forward planner has a major drawback. When it pursues a goal for the first time, it 
explores the model of the environment on the basis of a random walk. This is typical of the 
majority of systems based on reinforcement learning. In fact, if no heuristic is available, and if 
the environment is stochastic and a systematic exploration of it is not possible, this is one of 
the few alternatives available (cf. Thrun, 1992, for a review of other techniques that use the 
frequency of visit of action-state pairs to bias exploration). However, in the case of the neural 
forward planner the fact that the controller is applied to stochastic path-finding problems 
makes the goal state available to the controller. This can be used to explore the model of the 
environment backward from the goal. The new controller proposed in chapter 9, the “neural 
bidirectional planner”, exploits this possibility. The neural bidirectional planner is different 
from the neural forward planner in the following aspects: 
• A “back-actor” has been added to the controller. This is a neural network capable of 

selecting actions in order to generate backward explorations from the goal. This neural 
network is trained to select actions so that the backward searches quickly “escape” from 
the goal. A “back-predictor” has been added to the controller. This is a neural network 
that, together with the back-actor, is used to generate backward explorations. 

• The controller alternately generates forward explorations from the current state, and 
backward explorations from the goal. 

The neural bidirectional planner maintains the strengths of the neural forward planner and has 
also two advantages in comparison to it. The first is that it is superior in terms of exploration 
because it “finds” the goal immediately. The second is that it is superior in terms of 
propagation of the evaluations away from the goal because it updates evaluations on the basis 
of states whose evaluations have just been updated. These advantages become more important 
when the size of the problem space increases. 

Unfortunately the bidirectional planner also has some drawbacks. In particular it is not 
clear to which problem domains different from navigation it is applicable, and it has a 
complex architecture and functioning. A new “goal oriented forward planner” has also been 
proposed (but not implemented) that may have the simplicity of the forward planner and some 
of the strengths of the bidirectional planner. This might be tested in the future. 

Bidirectional planning represents a further step in focussing evaluation updating while 
planning on relevant states. Focussing has a crucial importance for reducing the time 



 

 

 

complexity of algorithms inspired by the Dyna-architectures. By referring to a navigation 
task, Figure 12.1 graphically summarises all the steps that have been done in this direction: (a) 
using planning only when necessary on the basis of the controller's confidence, and acting 
otherwise; (b) using sample backups instead of full backups; (c) using trajectory sampling (d); 
searching forward from the start (or current state); (e) searching backward from the goal. 

 

 

 

 

 

 

 

 

Figure 12.1: Graphical sum
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different role played within the system or by the different algorithms used to train them 
(supervised learning and unsupervised learning guided by the reward signal respectively). 

From these experiments it appears that modularity can make an important contribution to 
exploiting the advantages rendered by the generalisation property and to avoiding interference 
at the same time. From the experiments it also appears that a key aspect for the successful 
application of modularity is the functioning of the “gating mechanisms”. These are the 
mechanisms that decide when two different input-output associations share “enough common 
structure” and can be handled by the same module, and when they do not and have to be 
handled by different modules. Further research needs to focus on this aspect (cf. Ramamurti 
and Ghosh (1997) for the possibility of implementing the gating network with a local function 
approximator that should facilitate the specialisation of the experts). 

Chapters 10 has extended the investigation on modularity by integrating the modular 
version of the actor-critic architecture just considered, and the planning controllers described 
in chapter 8 and 9. The tests with the modular planning controllers have produced positive 
results: 
• The planning controllers are capable both of generalising and of limiting the negative 

effects of interference. 
• The planning controllers retain the positive strengths shown when dealing with single-

goal tasks: taskability, accumulation of experience, capacity to focus exploration. 
These tests were necessary because planning focuses on the same goal for long periods of 
time, and this can augment interference problems. Overall, chapters 10 should have given 
enough evidence that interference is an important problem for neural network planners, and 
that modularity may offer a solution for it. 

12.1.6 Coarse Planning and Time Limits of Reinforcement Learning 

The benefits of abstractions are well known in the classic artificial intelligence literature. How 
can abstract planning be implemented with neural networks? Chapter 11 has proposed and 
implemented a “coarse-planner”, based on the neural planner introduced in chapter 8, that 
gives a first simple solution to this problem. The coarse planner executes planning on the 
basis of “macro-actions”, defined as sequences of primitive-actions with the same nature (e.g. 
“north-north-north-north”), and then selects and executes primitive-actions in the 
environment. The simulations with the coarse planner have produced the following results: 
• The policy and the evaluations generated when planning at a coarse level are suitable for 

controlling action at a primitive level. This is possible because the “direction” of the 
optimal macro-action and the optimal primitive-action for a given state and goal, tend to 
be the same. 

• Thanks to the generalisation property of neural networks, the controller is capable of 
dealing with states that have not been considered while planning at a coarse level but are 
similar to those that have been experienced (this capacity is also exploited while doing 
planning at the primitive level). Moreover, the noise that affects actions allows the 
planner to explore all possible states while training the model of the environment. 

• Coarse planning shows a better performance than planning executed at a primitive level. 
The reason for this is that coarse planning allows a quicker exploration of the whole state 
space and a faster diffusion of the evaluations between different regions of the state space. 

Unluckily coarse planning appears to be applicable only to domains where the effects of 
actions' execution are approximately linear. How to implement more general forms of abstract 
planning with neural planners remains an open question. 
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Chapter 11 should have shown that there might be original ways to implement abstract 
planning with neural networks that are different from the ones proposed in the classic 
planning literature. It should also have shown that, within the context of neural-network 
Dyna-inspired controllers, abstraction might produce unexpected and different advantages 
that add to the known ones. 

 
Time Limitations of Reinforcement Learning. In comparison to reactive behaviour, 
planning, and in particular abstract planning, expresses its full potentiality when it is extended 
over long periods of time. The investigation of coarse planning (chapter 11) has re-examined 
an important limitation of discounted reinforcement learning (introduced and investigated in 
chapter 6) from a different perspective. The limitation is that in discounted reinforcement 
learning evaluations drop exponentially for states progressively more distant (in time) from 
the goal state, and so they are close to 0 for states very far from it. Given that the one-step 
learning signal is built on the basis of the difference between two of these evaluations, and 
given that with function approximation and robots with noisy sensors and effectors the 
evaluations are affected by noise, this learning signal is low and noisy itself. This can severely 
disrupt the process of learning of the policy. Notice that the slow rate of learning of 
reinforcement learning in problems where the start is far from the goal, is usually attributed to 
the number of states separating them, or to problems of exploration, not to an intrinsic 
limitation of discounted reinforcement-learning (e.g. see Thrun, 1992). 

By using macro-actions with different time-length, the experiments with coarse planning 
have shown that the reinforcement learning's time limitations just described have important 
negative effects on planning. A solution has been implemented that is based on using different 
discount coefficients for planning and for action. Unfortunately this solution causes problems 
to the interface between planning and acting. The conclusion is that time limitations of 
discounted reinforcement learning need further investigation and adequate solutions if we 
want to use such type of reinforcement learning to deal with long lasting tasks. 

12.2 A List of the Major “Usable” Insights Delivered 

This research has shown that it is possible to build interesting neural planners inspired by the 
Dyna-PI architecture. In particular the thesis has explored this possibility by proposing a 
novel neural forward planner, a novel bidirectional planner, a novel modular neural-network 
version of these two planners, and a novel coarse planner. The investigation of these planners 
has delivered several insights that can be used when implementing planning with neural 
networks within the Dyna-architectures framework. The most important insights can be 
summarised as follows (in order of presentation in the chapters): 
• Some principles proposed by blind search, heuristic search, and planning can be exploited 

to build neural networks planners inspired by the Dyna-framework. Some of these have 
been isolated and suitably adapted to be applied to neural controllers: iterative deepening 
exploration of the model of the environment; bidirectional exploration from the start and 
the goal to focus the backups; limits of the concept of policy (universal planners) and 
need for focussing; importance of the balance between the accuracy of the policy 
(conditional planning) and the possibility of re-planning. 

• The majority of the planning algorithms that can be (or have already been) implemented 
with neural networks, are based on the construction of some form of evaluation gradient 
field increasing (or decreasing) toward the goal. 
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• Discounted reinforcement learning has severe limitations when behaviours with a long 
time-horizon are considered. These limitations have to be solved if one wants to develop 
successful planning systems based on reinforcement learning. 

• The aliasing problem has been confirmed to be particularly impairing for reinforcement 
learning based navigation when it involves the goal states. 

• The generalisation capacity of neural networks has been confirmed to be crucial in 
dealing with noise and in reducing the curse of dimensionality problem deriving from big 
state spaces. However, it also has been shown that it causes the undesired effect of 
catastrophic interference. One way of facing catastrophic interference is to use mixture of 
experts networks for the evaluator and a hierarchical modular neural network for the 
actor. This solution works both for reinforcement leaning and for planning. 

• The Dyna-PI architecture is not taskable in a strong sense because when a new goal is 
assigned to the controller, it needs experience with that goal to acquire the reward 
component of the model of the environment relative to it. A solution is to limit the 
applicability of the architecture to shortest-path problems and to use a device, such as the 
matcher, to “generate internally” the reward signals. 

• When planning, the learning capacity of neural networks allows planning controllers to 
acquire a model of the environment autonomously (predictor). The experiments have 
furnished some data about how hard it is for the landmark navigation task studied here, 
and have shown that hardwired modularity, based on the available actions, can help the 
process of learning. 

• When iterating the predictions to generate simulated walks the neural model of the 
environment (predictor) has an interesting capacity to recover from noise since the images 
corresponding to the environment states tend to be “attractors” for the states predicted. 

• The neural model of the environment is the most delicate component of the controllers 
proposed, and probably of any planner based on neural networks. 

• For an autonomous robot it is crucial to plan and re-plan when necessary, and to act 
reactively the rest of the time. The decision of when to act and when to plan can be based 
on the controllers' “confidence”, built on the basis of the probabilities assigned to the 
actions by the reactive components in a given state. 

• A method has been proposed for implementing backward planning with neural Dyna-PI 
architectures. Backward planning, together with forward planning, allows the controller: 
(a) to focus search around the goal, the start, and the states between them; (b) to quickly 
diffuse the evaluations. 

• A way to implement a simple form of abstract planning with neural networks, “coarse 
planning”, has been proposed. The linearity of problems, the noise of actions, and the 
generalisation capacity of neural networks help to interface planning at a coarse level and 
acting at a fine level. Coarse planning improves exploration and evaluation updating. 

The hope is that these insights will be helpful to further develop the investigation of neural-
network predictive planners in general, and those inspired by the Dyna-PI architecture in 
particular. 

12.3 Future Work 

The experiments run have shown several interesting directions along which the investigation 
of the neural planners proposed in the thesis might continue. Some of these have been 
indicated in the s. 12.1. Here the most interesting remaining ones are analysed. 
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Simulated and Real Robots. This thesis has chosen to work with simulated robots and tasks 
to speed-up and ease the preliminary analysis of several aspects of the controllers proposed 
(cf. s. 1.1.2). The range of exploration of the thesis would have not been possible had a real 
robot and more complex tasks been used. This is a common practice (cf. Sutton and Barto, 
1998; Arkin, 1998). Now that a lot of knowledge has been gathered on the general behaviour 
of the controllers proposed, it has become important to test the same controllers with real 
robots and more difficult tasks. In this case, it is likely that the following problems would 
arise: 
• Limits of the predictor. It is likely that the predictor will show to have strong limitations 

when dealing with a more complex environment. Could modularity help? Modularity 
could be based on different actions or refer to different areas of the problem space. 

• Aliasing problem. The next header considers this point in detail. 
• Abstract planning. When the problem space is big and requires a prolonged activity, 

abstraction (over the details of actions and over time) becomes very important. 
• Modularity to avoid interference and to allow a more flexible behaviour. When the task 

requires a large number of activities, modularity can help to deal with interference and to 
enhance the flexibility of the system (i.e. to use the same modules/actions for different 
tasks). 

 
Aliasing Problem. For this thesis it has been decided to use a very simple “feature extractor” 
(it executed the extraction of “visual contrasts”) in order to speed up the simulations, given 
that the focus of the thesis was not the efficiency and scalability of the system (cf. s. 6.4.5). 
We have seen that this choice is one of the main causes of the aliasing problem observed in 
the simulations, since the simple feature extractor recodes the input image into contrast 
images that have many overlapping features. The aliasing problem limits the effectiveness of 
the controller. Now that the main behaviour of the controller has been studied, it would be 
interesting to address the problem by using one or more of the following solutions: 
• Adding/using sensors that allow the system to disambiguate similar states (this solution 

might incur in the problem of enlarging the state space). 
• Rethinking the architecture of the neural networks used to make up the planners so that 

they can use non-overlapping internal representations for states to be associated with 
different evaluations and actions (the simple two-layer networks used had few degrees of 
freedom). In literature a large number of solutions have been proposed to achieve this 
result. Just to mention some: radial-basis function networks (Sutton and Barto, 1998; 
Haykin, 1999), growing radial-basis function networks (e.g. Samejima and Omori, 1999), 
Kanerva coding (Kanerva, 1988; Sutton and Whitehead, 1993), CMAC (Albus, 1981; 
Miller et al., 1990; Wiering et al, 1998). 

• Using other kinds of reinforcement learning techniques that the literature is currently 
investigating (cf. Singh et al. 1994; Jaakkola et al., 1995; Lorincz et al., 2001; Wiering 
and Schmidhuber, 1998) that have been shown to have some potentialities with tasks 
made difficult by the aliasing problem. 

 
Interference and Modularity. The problem of interference and modularity is connected 
related to the previous one. Chapters 7 and 10 have shown that modularity is a promising idea 
that can be used to limit interference and to improve the scalability of the controllers. The 
chapters have also suggested that the major limitation of the modular controllers proposed 
here is the interference that happens at the level of the evaluator's gating network (cf. s. 7.5). 
This limits the capacity of the evaluator to use different experts when necessary. A solution to 
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this problem could be the application of the architecture proposed by Ramamurti and Ghosh 
(1997) that is based on a gating network that implements a local function approximator. 

A related issue is the possibility that the mixture of experts network is too rigid and not 
capable of discovering “structure” common to different problems. We refer the reader to s. 7.6 
for a discussion of this issue that may be the object of future investigation. 
 
Learning the Model of the Environment and Acting. Throughout the thesis, the controllers 
have learned the model of the environment before being tested. This raises the question of 
what would be the behaviour of the controllers if the model of the environment had to be 
learned while acting. The architecture as it is now would not work, because the controller 
would never reach the proper threshold of confidence. A possible solution would be a varying 
threshold that drops if the planning activity fails to increase the confidence after some time, 
and remain low for a considerable amount of time during which the controller acquires 
experience about the environment. An alternative would be to build some measure of the 
quality of the model of the environment, and base the planning activity on such a measure. 
 
Acting-Planning Controller. The idea of basing the decision about when to plan and when to 
act on the controller's confidence compared with a threshold can be further investigated. For 
example the threshold could vary on the basis of some measures of the “urgency” of action, or 
could vary on the basis of some measure of the costs of the consequences of “wrong” actions. 
 
Simplifying the Architecture. The architecture of the planners proposed is rather complex, 
especially the one of the modular bidirectional planner. As mentioned there is the possibility 
of integrating the predictor and the back-predictor, and maybe the actor and back-actor. 
Moreover s. 9.6 has proposed a planner with an architecture whose complexity is comparable 
with the complexity of the forward planner’s architecture, but that shares some strengths with 
the bidirectional planner. 
 
Improving Coarse Planning. Coarse planning has been shown to have many potentialities. 
New investigations should verify if it is possible to extend the kind of coarse planning 
presented here to problem domains different from navigation. The literature on reinforcement 
learning has just started to tackle this problem, but with little success so far (cf. s. 13.2.7). 
 
Limitation of Discounted Reinforcement Learning, Sub-Goals. The results of this research 
suggest that discounted reinforcement learning is limited in its time scope, and so is any form 
of planning based on it. Planning, and especially coarse planning, expresses its full power 
versus reactive behaviour when it can be applied to big chunks of behaviour and long periods 
of time. The implication is that solutions need to be found for this problem if one wants to 
build successful planners on the basis of reinforcement learning. As shown here, one 
possibility to overcome this problem is to use abstraction, where each “step” of the abstract 
level covers a longer period of time than a step at the “primitive” level (cf. also Linaker, 
2001). Another interesting possibility is to “break” long behavioural sequences into parts on 
the basis of sub-goals. Each sub-goal would possess its own gradient field and policy. The 
“summation” of more sub-goals would lead to the final goal (e.g. cf. Wiering and 
Schmidhuber, 1998). 
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13 Appendices 

Appendix 1 

13.1 Blind-Search and Heuristic-Search Strategies 

This appendix reviews some major blind-search strategies and heuristic-search strategies 
(Korf, 1988). The quality of these strategies is evaluated through the following criteria: 
• Completeness and optimality. These are two criteria used to evaluate the quality of 

different search strategies. A strategy is complete if it guarantees to find a solution in the 
case that there is one. Optimality is a measure of the quality of the solution found in terms 
of its cost. A search strategy is “optimal” if it finds the solution with the lowest cost 
among all the possible solutions. 

• Time complexity and space complexity. Time complexity and space complexity are 
respectively the measures of the time and memory that the search strategy needs to 
perform the search. Usually a “complexity asymptotic analysis” and a O[.] notation is 
used to give an approximate measure of these complexities (cf. Russell and Norvig, 1995, 
pp. 851-853). O[.] indicates the approximate number of steps taken by the algorithm to 
process the input. Roughly speaking, this number is based on one or more parameters 
(arguments of the function O[.]) that describe the size of the algorithm's input space, 
abstracts over small constant factors, and is based on “pessimistic” values of the input 
space parameters. This concepts will appear clearer with the examples given below. 

13.1.1 Blind-Search Strategies 

Breadth-First Search. In this search strategy the root node is expanded first, then all the 
nodes generated in this first step are expanded, then all the nodes generated in this second step 
are expanded, and so on. Breadth-first search is complete and optimal. If we assume a 
branching factor b (the average number of branches for each node), and that the solution of 
the problem has a path of length d, then the time and space complexity of the strategy is 
O[bd]. This makes breadth-first search exponentially expensive with d in terms of memory 
and time. This implies that the worst drawback of this search strategy is space complexity. 

 
Uniform Cost Search. This search strategy is similar to the previous one, but now the 
strategy expands the lowest-cost node s on the fringe, as measured by the path cost g(s) from 
the initial state to s. This strategy is complete and optimal. It has time and space complexity 
similar to those of breadth-first search. 

 
Uniform Cost Search from the Goal. This search strategy is similar to uniform cost search. 
The difference is that it expands the lowest-cost nodes starting from the goal instead of the 
initial state. This search strategy is usually not directly mentioned in the literature. It can be 
considered part of the bidirectional search (see below) if costs are taken into account. Here it 
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is reported explicitly because it is useful to build a unified view of planning methods based on 
“evaluations” (cf. s. 5.2). 

 
Depth-First Search. This search strategy expands the nodes at the deepest level of the tree, 
i.e. until the goal or a dead end is reached, and then backtracks. This search strategy is neither 
complete, because it can get stuck in branches with infinite length, nor optimal, because it 
may achieve the solution through a long path before having tried the shorter ones. If m is the 
maximum depth, then depth-first search has O[b×m] space complexity and O[bm] time 
complexity. 

 
Iterative-Deepening Search. This search strategy (Korf, 1985a) combines the benefits of 
breadth-first search and depth-first. It consists of a depth-first search with a limited depth. The 
depth starts with a depth of 1 expansion and is iteratively increased by 1. It is complete and 
optimal. The number of state expansions is wasteful as some states are expanded multiple 
times. However, this implies little computational inefficiency, as the biggest consumption of 
computation is caused by the last nodes so that its time complexity is O[bd] as for breadth-first 
search. However, it is very efficient with regards to memory: its space complexity is O[bd]. 

 
Bidirectional Search. This search strategy (Doran, 1966; Pohl, 1971) is based on the 
simultaneous expansion of nodes both forward from the initial state and backward from the 
goal with one of the previous search strategies. It stops when the two searches meet in the 
middle. It is complete and optimal. This search is very efficient in terms of time complexity 
given that the depth of the solution is cut by 2: its time complexity is O[bd/2]. Its space 
complexity is O[bd/2] since the outcomes of one of the two searches have to be retained in 
memory to detect if the two searches have met. Two problems with bidirectional search are 
that: (a) to be applicable it must be possible to produce a search backward from the goal 
(backward operators); (b) it implies difficulties if many goal states are considered. 

13.1.2  Heuristic-Search Strategies 

Greedy Search. Greedy search implies that the nodes with the least estimated cost h[s] to the 
goal are expanded first. The greedy search is not optimal and is not complete because it can 
go down an infinite path and never return back. Its time and space complexity are O[bm] 
where m is the maximum depth of the search space. 
 
A* Search. This search strategy (Hart et al., 1968) is probably the most popular heuristic-
search strategy. It combines the advantages of uniform cost search and greedy search. It 
expands the nodes that have the minimum sum of path cost plus expected cost to goal: f[s] = 
g[s] + h[s]. The only restriction that it requires is that h[.] is “admissible”. A heuristic function 
is admissible if it is optimistic, in the sense that it never overestimates the cost to the goal. It 
has been demonstrated (Dechter and Pearl, 1985) that A* search is complete and optimal. 
Unfortunately, even if A* provides enormous computational savings compared to blind-
search strategies, its time complexity still grows exponentially with d, the distance from the 
goal, for the majority of heuristics of practical importance. However, space complexity is the 
main drawback of A* (but see below) because it needs to keep all generated nodes in 
memory. 
 
IDA* - Iterative Deepening A*. IDA* search (Korf, 1985b) is a variant of A* that 
diminishes the memory requirements of A* search. It is basically a limited-depth-first search. 



 

 

 
164

In IDA* the depth is limited on the basis of increasing fixed values of f[.], instead of the 
number of nodes of the explored path as in the limited-depth-first search. As A* search, IDA* 
search is complete and optimal. Its space complexity is O[bd]. Its time complexity depends on 
the number of values assumed by f[.] during the search. If n is the number of nodes expanded 
by A*, then, in the worst case when f[.] assumes a new value for each node expanded, the 
time complexity of IDA* search is 1 + 2 + 3 + … + n = ((n+1) n) / 2 = O[n2]. 
 
Learning Real-Time A*. LRTA* (Korf, 1990; Jokoo and Ishida, 1999) allows agents to 
interleave planning and execution (hence “real-time”). The agent experiences the problem 
many times (trials), during which it updates (learns) the estimate of the heuristic h[.]. At each 
time step the agent repeats the following procedure: 
• Lookahead. Calculate f[j] = k[i, j] + h[j] for each neighbour j of the current node i, where 

k[i, j] is the cost from i to j and h[j] is the current estimate of the shortest distance from j 
to one goal node. 

• Update. Update the estimate of node i as follows: h[i] ← minj[f[j]]. 
• Action selection. Move to the neighbour j that has the minimum f[j] value. Ties are 

broken randomly. 
LRTA* is complete under the assumptions that: h[.] are initially non-negative and admissible; 
each link has positive costs; there exist a path from every node to a goal node. It is also 
optimal over repeated problem solving trials, i.e. the values h[i] converge to their actual true 
values h*[i] computed as the cost of the optimal path from i to one goal node. Notice that if 
no heuristic is available, the initial h values can be set at 0. In this case what will happen is 
that with repeated updates the h values will grow starting from the ones around the initial state 
and will create a wave-front of values decreasing from the initial state toward the goal. 
Through repeated trials this wave front will eventually reach the goal and the algorithm will 
build the correct heuristic function to reach the goal through the an optimal path. 
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Appendix 2 

13.2 Markov Decision Processes, Reinforcement Learning and Dynamic 
Programming 

13.2.1 Markov Decision Processes 

Markov decision problem. The main aspects of “Markov decision processes” are now 
presented (cf. Puterman, 1994, for details). A Markov decision problem implies that a 
learning agent interacts with an environment at some discrete time steps t = 1, 2, 3, … . On 
each time step t the agent perceives a state of the world st ∈ S, and on the basis of this it 
selects an action at ∈ A.  The environment produces a numerical reward rt+1 and a next state 
st+1 in response to each action at executed by the agent. The dynamics of the environment can 
be modelled by one-step “state-transition probabilities” defined as follows: 

 
 pa

ss' = Pr[st+1 = s' | st = s, at = a]       ∀ s, s' ∈ S       ∀ a ∈ A Eq. 13.1
 

and “one-step expected reward” (a stochastic variable whose probability distribution depends 
on s, a and s'): 

 
 ra

ss' = E[rt+1 | st+1 = s', st = s, at = a]       ∀ s, s' ∈ S       ∀ a ∈ A Eq. 13.2
 

These two sets of quantities together constitute the “one-step model of the environment”. In 
functional terms the “model of the environment” is composed of two functions, the 
“transition-probability function” and the “reward function”. The model’s transition-
probability function, MTP, maps the current state st, the current action at and a next state st+1 
into the probability of having that particular next state: 

 
 MTP: S × A × S → [0, 1] Eq. 13.3
 
When the environment is deterministic, then this part of the model maps the current state 

st and the current action at into the next state st+1: 
 
 MTP: S × A → S Eq. 13.4
 
The model’s reward function, MR, maps the current state st, the current action at, the next 

state st+1 and the expected (average) reward ra
ss', into the probability of obtaining this reward: 

 
 MR: S × A × S × ℜ → [0, 1] Eq. 13.5
 
In the simpler cases in which a particular reward is deterministically associated with each 

state, the reward function becomes: 
 
 MR: S → ℜ Eq. 13.6
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This case is relevant when we want to frame the problems involving the achievement of a 

goal with Markov Decision Processes (cf. s. 3.1). 
The agent's objective is to learn a “policy” π, i.e. a mapping from states and actions to 

probabilities (“actions' probabilities”) of selecting each particular action: 
 
 π: S × A → [0, 1] Eq. 13.7
 

Notice that when the policy “converges”, the probabilities tend to be either 0 or 1, and the 
policy becomes deterministic (but cf. Jaakkola, 1995). 

In the case of deterministic action policies, the policy is a direct mapping from the states 
to the actions: 

 
 π: S → A Eq. 13.8
 

The State Evaluation Function Vππππ[s]. For each state s a “state evaluation function” Vπ[s] is 
defined that depends on the policy π and is calculated as the sum of expected discounted 
future rewards starting from t+1: 

 
 Vπ[s] = E[rt+1 + γ rt+2 + γ2 rt+3+ …| st = s] = 

= E[rt+1 + γ (rt+2 + γ rt+3+ γ2 rt+4 + …) | st = s] = 
= Σa∈A[π[a, s] Σs'∈S[pa

ss' (ra
ss' + γ E[rt+2 + γ rt+3+ γ2 rt+4 +…| st+1 = s'])]] = 

= Σa∈A[π[a, s] Σs'∈S[pa
ss' (ra

ss' + γ Vπ[s'])]] 

Eq. 13.9

 
where π[s, a] is the probability that the policy selects a in s, E[.] is the mean operator, and 
γ∈[0, 1] is a “discount coefficient”. The last of the Eq. 13.9 is the “Bellman equation” 
(Bellman, 1957). The agent's aim is to find an “optimal policy” π* that maximises Vπ[s] for 
all s ∈ S. A policy is defined “optimal” if it yields the “optimal state evaluation function” 
V*[.]: 

 
 V*[s] = maxπ Vπ[s] = maxa Σs'∈S[pa

ss' (ra
ss' + γ V*[s'])]     

∀ s, s' ∈ S    ∀ a ∈ A 
Eq. 13.10

 
that is called “optimal Bellman equation”. 

Notice that if the model of the environment is known (transitions probabilities and 
expected reward), if we treat Vπ[.] as unknowns, then the set of Bellman equations for all s∈S 
forms a system of |S| equations in |S| unknowns whose unique solution are the values of Vπ[.]. 
Some reinforcement learning methods (Sutton and Barto, 1998; cf. s. 13.2.4) and dynamic 
programming methods (Ross, 1983; Bertsekas, 1995; cf. s. 13.2.9) estimate these values 
through iterative algorithms. 

 
The State-Action Evaluation Function Qππππ[s, a]. A parallel set of value functions for state-
action pairs, rather that for states, is particularly important for learning methods. The value of 
taking action a in state s under policy π, denoted by Q[s, a], is the expected discounted future 
reward starting in s, taking a, and henceforth following π: 

 
 Qπ[s, a] = E[rt+1 + γ rt+2 + γ2 rt+3+ …| st = s, at = a] = 

= Σs'∈S [pa
ss' (ra

ss' + γ Vπ[s'])] = 
= Σs'∈S [pa

ss' (ra
ss' + γ Σa'∈A[π[s', a'] Qπ[s', a']])] 

Eq. 13.11
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Qπ[s, a] is known as the “action-evaluation function” for policy π, and the last formula is 

the “Bellman equation” for it. The optimal “action-evaluation function” Q*[s, a] and the 
corresponding “optimal Bellman equation” are: 

 
 Q*[s, a] = maxπ [Qπ[s, a]] = Σs'∈S [pa

ss' (ra
ss' + γ V*π[s'])] = 

= Σs'∈S[pa
ss' (ra

ss' + γ maxa' Q*[s', a'])]          ∀ s, s' ∈ S    ∀ a, a' ∈ A 
Eq. 13.12

 
Notice that if the transition probabilities are known (transitions probabilities and expected 

reward), and if we treat Qπ[.] as unknowns, then the set of Bellman equations for all the states 
s∈S forms a system of |S| equations in |S| unknowns whose unique solution are the values of 
Qπ[.]. Some reinforcement learning methods (cf. s. 13.2.4) estimate these values through 
iterative algorithms. 

13.2.2 Markov Property and Partially Observable Markov Decision Problems 

The whole theory of Markov decision processes is based on the assumption that the problem 
faced by the agent satisfies the “Markov property”. This assumption implies that the 
information contained in the signal of a state s carries a complete description of the 
environment at that moment: no memory of previous states or actions selected is needed to 
generate the perfect transition probabilities and rewards. Formally this is expressed in the 
following way: 

 
 Pr[st+1 = s', rt+1 = r | st, at, rt,   st-1, at-1, rt-1,   st-2, at-2, rt-2, …] = 

Pr[st+1 = s', rt+1 = r | st, at]          ∀ s', r,   st, at, rt,   st-1, at-1, rt-1, … 
Eq. 13.13

 
In the majority of practical problems, the Markov property does not hold. In fact the 

agent knows the state of the environment through a sensorial apparatus that returns limited 
and noisy information about the current state of the environment. For example a camera of a 
robot returns information about a limited part of the environment surrounding the robot, with 
a limited definition, etc. In the scenario used in this thesis (cf. s. 6.2) the robot perceives the 
environment through sensors that return a feature-like pattern, i.e. a vector of real numbers x, 
in correspondence to each state s.  This can be considered a quite general case, where the 
agent is not allowed to directly observe the state of the environment but can receive 
“messages” from it that contain information about its state. At each time t an observable 
message x is drawn from a finite set of messages X according to an unknown probability 
distribution Pr[x|s] (cf. Jaakkola et al., 1995). Notice that it is possible that different states s 
form S are mapped into the same message x. This problem, named the “perceptual aliasing 
problem”, is particularly impairing because the “agent's internal representation confounds 
external world states” (Whitehead and Ballard, 1991). 

An environment for which the Markov property does not hold is said to be “partially 
observable” or “inaccessible” (cf. also s. 2.4), and to generate “Partially Observable Markov 
Decision Problems” (POMDP). When reinforcement learning methods are applied to a 
partially observable Markov decision problem they may still work, and their performance 
degrades gracefully as the degree of “non-Markovianness” increases, but this is not 
guaranteed (Singh et al., 1994). Some solutions have been proposed to deal with these 
problems. The majority of these solutions have attempted to combine some forms of estimate 
of states with learning. The internal representation of the state is built by combining current 
sensor readings with the memory of past internal representations and readings. For example to 
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this end recurrent neural networks have been used (e.g. Lin and Mitchell, 1992) or probability 
distributions over underlying states (e.g. Sondik, 1978; McCallum, 1993). A second approach 
has attempted to use “active perception”, i.e. actions directed to gather further information to 
disambiguate the states (e.g. Whitehead and Ballard, 1990). Another approach has proposed a 
system that uses the current sensorial information only, and searches between stochastic 
policies rather than between deterministic policies. This approach has been suggested by the 
result that for some partially observable Markov decision problems, memory-less stochastic 
policies are significantly better than any memory-less deterministic policy (Singh et al., 1994; 
Jaakkola et al., 1995). All these solutions are currently under investigation and each have 
several drawbacks, so partially observable Markov decision problems are still a fully open 
chapter of reinforcement learning research. 

The scenario used to test the algorithms proposed in the thesis and introduced in s. 6.2 
involves a partially observable environment. In s. 6.4.3 some negative consequences that this 
environment produces on reinforcement learning are shown. These problems have been 
tolerated and not directly tackled in this research, because the focus was on different issues, 
i.e. planning with reinforcement learning and neural networks. 

13.2.3 Reinforcement Learning 

Reinforcement learning methods (Barto et al., 1983; Kaelbling et al., 1996; Sutton and Barto, 
1998) attempt to find a policy that solves Markov decision problems in two phases (usually 
carried out in parallel, as we shall see). In the first phase they build up the evaluations of the 
states, or the state-action pairs. We have seen in s. 13.2.1 the definitions of the evaluations in 
these two cases. It is worth stressing that once these evaluations are built, they form a gradient 
field over the state space. This gradient field has high evaluations for states that are “close” 
(in terms of number of actions that need to be executed) to the states with relevant positive 
rewards, and low evaluations for states far from them. For example in the case of the 
stochastic path-finding problems, the level of evaluations increases going toward the goal. 
Similarly, the evaluations of the gradient field are low (and negative) for states that are close 
to states with relevant negative rewards. The second phase exploits this gradient field to build 
up the policy that leads to states with positive rewards and away from states with negative 
rewards, as quickly as possible. 

13.2.4 Approximating the State or State-Action Evaluations 

Updating the Estimates of Vππππ[s]. If we assume we have a policy π that leads to exploration 
of the different regions of the problem space (for example, for now, suppose we have a 
random walk policy), it is possible to progressively find more accurate estimates of the 
evaluation function Vπ[s]. This can be done by using an iterative approximation rule based on 
the Bellman equation Eq. 13.9. In particular when a state is visited, the following updating 
rule can be applied to the estimate V'π[s] of Vπ[s]: 

 
 V'π[st] ← V'π[st] + η ((rt+1 + γ V'π[st+1]) - V'π[st]) Eq. 13.14

 
This rule is called “TD(0)” (Sutton and Barto, 1998, p. 134), where TD stands for “Temporal 
Difference”. “0” indicates that the updating rule considers two succeeding steps only. In this 
research only this case is considered, and the so called “TD(λ) rule” (cf. Sutton and Barto, 
1998, p. 163-191) is not investigated (cf. s. 6.4.2 for the reasons of this). 

The value et, defined as: 
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 et = (rt+1 + γ V'π[st+1]) - V'π[st] Eq. 13.15
 

is called “TD-error” (Temporal-Difference error). The TD-error represents the difference 
between two estimates of the true evaluation Vπ[st]. The first estimate, (rt+1 + γ V'π[st+1]), is 
expressed at time t+1. The second estimate, V'π[st], is expressed at time t. The fact that this 
rule updates the estimate V'π[st] on the basis of another estimate (V'π[st+1]), makes the TD(0) 
rule a “bootstrapping” method. How is it possible that notwithstanding this bootstrapping 
process, V'π[st] converges to the true evaluations? The explanation is that the estimate (rt+1 + γ 
V'π[st+1]) is more accurate than the estimate V'π[st] because: 
• rt+1 is directly experienced, and not guessed as in V'π[st] 
• V'π[st+1] is temporally closer to future rewards than V'π[st], so it is more accurate. 
Notice that this rule attempts to compute accurate evaluations of the states according to the 
current policy π, independently of its quality. S. 13.2.5 and 13.2.6 will show how this policy 
can be improved on the basis of the evaluations. Notice also that this rule updates V'π[st] on 
the basis of a sampling over the possible resulting states to which the execution of an action 
might lead. When the evaluation of state s is updated several times the frequencies of visiting 
of the state s' that follow s reflect the transition probabilities of the Bellman equation (cf. Eq. 
13.9). 

If each state is visited an infinite number of times, and if some other weak conditions 
hold, the approximations V'π[st] converges to the true evaluations Vπ[st] (cf. Sutton and Barto, 
1998, p. 141). Intuitively what happens during the updating of the evaluations is that the 
rewards received at the goal states are propagated backward towards the preceding states, then 
the (discounted) evaluations of these states are propagated backward to the states that 
preceded them, and so on. Notice that the discount factor implies that the evaluations 
associated with the states decrease exponentially for states progressively more distant from 
the states with positive rewards. This means that the evaluations, as initially mentioned, form 
a gradient field over the states, decreasing for states farther from the goal. 

One possible way to implement the algorithm that approximates the Vπ evaluations is to 
have a look-up table that stores the V'π in correspondence of the entries given by the states s. 
This is called “tabular reinforcement learning”. 

 
Updating the Estimates of Qππππ[s, a]. The same reasoning holds for the updating of the Q 
evaluations. Assuming a policy π that leads to repeated exploration of different state-action 
pairs, the following updating rule can be used to iteratively improve the estimates Q'π[s, a] of 
Qπ[s, a] related to that policy: 

 
 Q'π[st, at] ← Q'π[st, at] + η ((rt+1 + γ Q'π[st+1, at+1]) - Q'π[st, at]) Eq. 13.16

 
This rule is called “Sarsa” (Sutton and Barto, 1998, p. 145). If each state-action pair is visited 
an infinite number of times, and if some other weak conditions hold, the Q'π[s, a] estimates 
converge to Qπ[s, a] (cf. Sutton and Barto, 1998, p. 145). In the simplest case the Q'π[s, a] are 
stored in a two-dimensional look-up table with s and a as entries (“tabular reinforcement 
learning”). 

Sarsa is slightly different from the most popular reinforcement learning algorithm, called 
“Q-learning” (Watkins, 1989; Barto and Sutton, 1998, p. 148). Q-learning is implemented 
with the following rule: 
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 Q'*[st, at] ← Q'*[st, at] + η ((rt+1 + γ maxa’[Q'*[st+1, a’]]) - Q'*[st, at]) Eq. 13.17
 

This rule attempts to directly approximate the optimal evaluations Q* (cf. optimal Bellman 
Eq. 13.12). The estimates Q'*[st, at] converge to the optimal evaluations Q*[st, at] under the 
only condition that each state-action pair is visited an infinite number of times (Watkins, 
1989). 

Notice that in Q-learning the estimates Q'* converge to the evaluations Q* corresponding 
to the optimal policy (e.g. the policy that moves to the goal state following the most direct 
“route”) independently of the policy that is being followed. For this reason it is called an “off-
policy” method. This differs from TD(0) and Sarsa where the estimates V'π and Q'π converge 
to the Vπ and Qπ related to the policy π  followed at the moment. These are called “on-policy” 
methods. 

13.2.5 Searching the Policy with the Q'* and Q'ππππ evaluations 

How do we build a policy on the basis of the evaluations? The analysis of this problem starts 
with the easiest case of the Q evaluations and “Q-learning” (cf. Watkins, 1989; Sutton and 
Barto, 1998, pp. 148-149). Suppose we have a certain policy, e.g. a random walk. The 
updating rule of Eq. 13.17 leads to progressively more accurate estimates Q'* of Q*. At this 
point, if we are in a state s and we want to implement a policy that is better than the random 
walk, we can “ascend” the gradient field of evaluations toward higher evaluations, even if 
they are approximate, by selecting the actions as follows: 

 
 at = argmaxa∈A[Q'*[st, a]] Eq. 13.18

 
This policy is called the “greedy-policy”. Notice that we can improve the Q'* evaluations and 
follow the greedy policy in parallel. The improvement of the evaluations automatically brings 
an improved policy. 

It is important to notice that there is a trade-off between the need to exploit the 
knowledge incorporated in the evaluations and the need to explore different state-action pairs 
to improve the global evaluations themselves. The greedy policy does not guarantee enough 
exploration because at each state it always selects the action with the maximum Q'*. One 
popular way to improve exploration is to select the best action only with a certain probability 
1-ε , say equal to 0.95, and to select an action among the other actions with probability ε = 
0.05. The selection among these actions is done with a uniform probability distribution. The 
resulting policy is called “ε-greedy policy”. It has been demonstrated (Watkins, 1989) that 
this policy converges to the optimal policy π∗, and the Q'* converges to Q*, if ε progressively 
converges to 0 (i.e. to the greedy policy). 

A commonly used variant of the ε-greedy policy, is the “soft-max policy”. This takes into 
consideration the fact that the probability of choosing an action should be correlated with the 
level of Q, instead of being, say, either 0.95 or 0.01. According to the soft-max function (or 
Boltzmann distribution) the probability Pr[.] that a given action a becomes the winning action 
awin given the current state s, is: 

 
 Pr[a = awin] = exp[Q'*[s, a]] / Σa'∈A[exp[Q'*[s, a']]] Eq. 13.19
 
The case of Sarsa is similar. The greedy policy selects the action with maximum Q'π: 
 
 at = argmaxa∈A[Q'π[st, a]] Eq. 13.20
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Also in this case an ε-greedy policy or a soft-max policy can be followed to allow 

exploration. When one of these policies is used in parallel with the updating of the Q'π 
evaluations, the policy converges to the optimal policy π∗ and the Q'π estimates converge to 
the optimal evaluations Q* if each state-action pair is visited an infinite number of times and 
if the policy converges to a greedy policy (Sutton and Barto, 1998, p. 146). 

13.2.6 Actor-Critic Model 

Notice that an agent that learns on the basis of Q-learning or Sarsa does not need to have a 
data structure to store the action probabilities of the policy. In fact if Q'* or Q'π are stored in a 
suitable data structure, the probabilities of actions can be computed on the fly on the basis of 
the Q'* or Q'π values through the ε-greedy method or the soft-max method. This is what is 
done in the majority of reinforcement learning applications. A different type of reinforcement 
learning methods, called “actor-critic methods”, is based on the evaluations V'π of Eq. 13.14 
(Barto et al., 1983; Sutton and Barto, 1998, pp. 151-153). These methods are particularly 
relevant because they are at the core of all the architectures and algorithms presented in this 
thesis. 

Actor-critic methods are based on two data structures, one that stores the evaluations, 
called “critic”, and one that stores the policy, called “actor”. The term critic is often used to 
name the data structure storing the evaluations plus the process that computes the error et 
defined later in Eq. 13.21. In the thesis for clarity the term “evaluator” is used to refer to the 
data structure that stores the evaluations while the term “TD-critic” is used to refer to the 
process that computes et. The actor, the data structure storing the policy, can assume the form 
of a look-up table that stores the probabilities of the state-action pairs, and has the states s and 
the actions a as entries (“tabular reinforcement learning”). Alternatively it can store the 
“action merits” of the state-action pairs, that here are indicated with m[s, a]. An “action merit” 
is a value that summarises the contribution of that state-action pair to the achievement of the 
long-term reward. The probabilities used to select the actions are calculated on the basis of the 
merits (considered as pseudo-probabilities) using a method such as the soft-max method. 

It has just been said that the evaluator stores the approximate evaluations V'π. After an 
action at is executed the evaluator evaluates the new state st+1 to determine if it is better or 
worse than the previous state st. This is done by comparing the estimate V'π[st+1] of the new 
state, and the estimate V’π[st] of the old state. The comparison has to take into account the fact 
that the evaluations are expressed in different times, and that a reward could be received when 
passing from st to st+1. The proper formulation of this comparison is represented by the TD-
error et of Eq. 13.15, repeated here for convenience: 
 

 et = (rt+1 + γ V'π[st+1]) - V'π[st] Eq. 13.21
 
This error can be used to correct the evaluations of the evaluator, with the updating rule 

of Eq. 13.14, here expressed in terms of the TD-error: 
 

 V'π[st] ← V'π[st] + η ((rt+1 + γ V'π[st+1]) - V'π[st]) = V'π[st] + η et Eq. 13.22
 
The interesting thing is that the TD-error is also suitable for updating the merit m[s, a] of 

the action at (but only this one) selected by the actor: 
 

 m[s, a] ← m[s, a] + ζ et Eq. 13.23
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where ζ is a learning parameter. The reason why the TD-error is suitable for updating the 
merit of the action selected is that if the estimate V'π[st] has converged to the true value Vπ[st], 
it represents the average of the sum of the future discounted rewards over the actions that can 
be selected at st, sampled on the basis of their current probabilities. If an action at is selected 
and executed at st and we have that (rt+1 + γ V'π[st+1]) > V'π[st], this means that the action 
selected has led to a state st+1 that has a discounted evaluation that is higher than the average 
discounted evaluation of the states that are usually reached from st. In this case the updating 
rule of Eq. 13.23 suitably increments the merit of the action at selected (and hence its 
probability). On the contrary if we have that (rt+1 + γ V'π[st+1]) < V'π[st] this means that the 
action selected has led to a state that has a discounted evaluation that lower than the average 
evaluation of the states that are usually reached from st. In this case the updating rule of Eq. 
13.23 suitably decreases the merit of the action at selected (and hence its probability). 

The implementation of the actor-critic algorithms implies that the evaluations and the 
policy are improved in parallel while the agent is acting. The evaluations become more 
accurate for the states given the current policy, while the current policy is improved toward 
the optimal policy on the basis of the current evaluations. The parallel updating of evaluations 
and policy is called “policy iteration”. 

It has been mentioned that the actor-critic methods are at the core of all the architectures 
and algorithms presented in this thesis. Why have they been preferred to the more simple and 
popular Q-learning? There are three reasons for this choice: 
• Reinforcement learning methods can be applied with success to real problems only if an 

approximation method is employed (cf. s. 13.2.8). Sutton et al. (2000) have shown that a 
version of actor critic algorithm with arbitrary differentiable function approximation 
converges to a locally optimal policy. In contrast so far the strategies based on Q 
evaluations have proven theoretically intractable for similar results. 

• Stochastic policies can be better than deterministic policies to deal with partially 
observable Markov decision processes (cf. s. 13.2.8). 

• The author is particularly interested in the actor-critic methods because it has been shown 
that they have an interesting biological plausibility (cf. Sutton and Barto, 1990; Houk et 
al., 1994; Baldassarre, 2001b and 2002). 

13.2.7 Macro-actions and Options 

In the last few years, reinforcement learning research has started to investigate the concept of 
“macro-actions” or “options” within the Markov decision processes framework (Sutton et al., 
1998). To make long-term decisions, an agent needs to predict the consequences of the 
possible courses of action at multiple levels of temporal abstraction. Consider a traveller 
deciding to undertake a journey to a distant city. The traveller has to decide to go by fly or to 
drive. Each of these steps involves prediction and decision. After a decision is taken, smallest 
actions have to be decided. For example calling a taxi may involve finding a telephone, 
dialling each digit, and so on down to the individual muscle contractions to push the buttons. 

A macro-action consists of three components. An “input set”: 
 

 I ⊆ S Eq. 13.24
 

a “policy”: 
 

 π: S × A → [0, 1] Eq. 13.25
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and a “termination condition”: 
 

 β: S → [0, 1] Eq. 13.26
 

A macro-action is available at state s only if s ∈ I. The input set restricts the range of 
application of the option in a potentially useful way. In particular it limits the range over 
which the option's policy need to be defined. If the option is taken then actions are selected 
according to π  (in this section π is used for the policy of option and µ for the global policy). 
The option terminates stochastically according to β. When the option terminates, the agent 
selects another option. 

Planning with options requires a model of their consequences. A semi-Markov decision 
model (SMDM) can be used for this purpose. The adjective “semi-” indicates the fact that 
within this model the single options are treated as a whole. At this level the Markov 
assumption holds. At the level of the policy of the single option, the Markov assumption does 
not hold. 

The “reward” part of the model of an option o for any state s, is: 
 

 ro
s = E[rt+1 + γ rt+2 +γ2 rt+3 + … +γk-1 rt+k | ε[o, s, t]] Eq. 13.27

 
where t+k is the time where o terminates, ε[o, s, t] is the event that in state s and time t the 
macro-action o is chosen. The state-prediction part of the model is: 
 

 po
ss' = Σ∞

k=1 [γk Pr[st+k = s' | ε[o, s, t]]] Eq. 13.28
 
po

ss' is a combination of the likelihood that s' is the state in which o terminates, weighted with 
a measure of how delayed that outcomes is relative to γ. 

If we define µ the Markov policy that selects for options in correspondence of a given 
state, then we can define the value of a state for this option policy as: 
 

 Vµ[s] = E[rt+1 + γ rt+2 + … +γk-1 rt+k + γ k Vµ[st+k]| ε[µ, s, t]] = 
= Σo∈O [µ[s, o] (ro

s + Σs'[po
ss' Vµ[s']])] 

Eq. 13.29

 
where k is the duration of the first option selected by µ. Notice that the discount coefficient is 
incorporated into the transition probabilities (cf. Eq. 13.28). A similar equation can be written 
for Qµ[s, o]: 
 

 Qµ[s, o] = E[rt+1 + γ rt+2 + … +γk-1 rt+k + γ k Vµ[st+k]| ε[o, s, t]] = 
= E[rt+1 + γ rt+2 + … +γk-1 rt+k + γ k Σo'∈O [µ[st+k, o'] Qµ[st+k, o']]| ε[o, s, t]] = 

= ro
s + Σs'[po

ss' Σo'∈O [µ[s', o'] Qµ[s', o']] 

Eq. 13.30

 
From these equations it is possible to infer the optimal equation that corresponds to the 

best policy µ∗ as we have done in the case of simple actions. It is also possible to define an 
iterative algorithm to approximate the evaluations of the states: 
 

 Vµ[s] ← Vµ[s] + η((ro
s + γ k Vµ[st+k]) - Vµ[s]) Eq. 13.31

 
Notice that for these sample backups the discount factors have to be made explicit since there 
are no transition probabilities. 
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For the case of the Q values the iterative algorithm is: 
 

 Qµ[s, o] ← Qµ[s, o] + η((ro
s + γ k Qµ[ st+k, ot+k]) - Qµ[s, o]) Eq. 13.32

 
The theory of options is quite new. Few applications and few results have been obtained 

on its basis (e.g. McGovern et al., 1998; Sutton et al., 1999). Notwithstanding this, the idea of 
options that it offers is very general, so it is useful as a solid foundation for developing 
different algorithms for abstract reinforcement learning and abstract planning based on 
reinforcement learning. Chapter 11 shows how the theory of options has been useful for this 
research to develop a simple kind of abstract planning. 

13.2.8 Function Approximation and Reinforcement Learning 

So far it has been assumed that the reinforcement learning methods presented are 
implemented with states represented as whole discrete entities and look-up tables (“tabular 
reinforcement learning”). If the number of states is big, this approach is not feasible. It would 
not be possible to have a data structure to store all possible state evaluations and all possible 
state-action pairs (space complexity). It would also take too long to accumulate experience 
about all such states (time complexity). 

An example of this problem is a robot endowed with several sensors. Each sensor gives 
partial information about the state of the world, so that many sensors are needed. Together the 
sensors return a vector of numbers (“state variables”). If b is the (average) number of states of 
a sensor, and n is the total number of the agent's sensors, the number of states that the robot 
can perceive is about bn. For example the simulated robot used in this research is endowed 
with a simple one-dimension binary retina with 50 pixels. This implies 250 different possible 
input configurations. The exponential increase for each state variable (“dimension”) added, 
makes it impossible to treat each single state of the problem individually. 

The only solution to this difficulty is to use “function approximation methods” (Sutton, 
1996; Sutton and Barto, 1998, p. 193). These methods are capable of “generalising”, i.e. they 
can extend the experience accumulated for some states to states described by similar state 
variables (cf. also s. 4.4.1 on this issue). 

Some examples of function approximation methods are the following: neural networks 
(cf. s. 13.3.3; Sutton and Barto, 1998, p. 197-202; Samejima and Omori, 1999); CMACs 
(Albus, 1981); Kanerva coding (Kanerva, 1988; Sutton and Whitehead, 1993); decision-tree 
(Chapman and Kaelbling, 1991); explanation-based learning methods (Yee et al., 1990). 

13.2.9 Dynamic Programming 

Dynamic programming (Ross, 1983; Bertsekas, 1987) refers to a collection of algorithms that 
can be used to compute evaluations and policies given a model of the environment as the one 
summarised by Eq. 13.3 and Eq. 13.5. This and the following sections present the most 
important aspects of dynamic programming relevant for this research. 

If a model of the environment is available, the updating of the state evaluations can 
exploit the fact that the transition probabilities and expected rewards are known. If we assume 
we have a particular policy π[s], then the estimates V'π[s] for each state can be updated (this 
is called “sweep”) with the following rule: 
 

 V'π[s] ← Σa∈A[π[a, s] Σs'∈S[pa
ss' (ra

ss' + γ V'π[s'])]] Eq. 13.33
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This rule directly descends from the Bellman Eq. 13.9, and is called “policy evaluation”. 
Notice that V'π[s] is updated according to all possible next states (“full backup”), not just one 
as in the case of the reinforcement learning methods (“sample backup”, cf. Eq. 13.14 and 
Figure 13.1). If this updating rule is applied iteratively the estimates V'π[s] converge to the 
true values Vπ[s] (e.g. Sutton and Barto, 1998, p. 91). 

The model of the environment can also be used to compute the greedy policy on the basis 
of the current evaluations (“policy improvement”). Suppose we have started with a random 
policy, and then we have executed several cycles of policy evaluation so that the estimates 
V'π[s] are now accurate. We can compute the greedy policy with respect to the new estimates 
V'π[s] by selecting the action a according to the following rule: 
 

 a = argmaxa[Σs'∈S[pa
ss' (ra

ss' + γ V'π[s'])]] Eq. 13.34
 

The “policy improvement theorem” (e.g. Sutton and Barto, 1998, p. 95) guarantees that the 
evaluations of all states under the new greedy policy are better than or the same as previously. 

If cycles of policy evaluation and cycles of policy improvement are alternated (“policy 
iteration”), the system converges to the optimal policy and optimal evaluation function if all 
the states are visited an infinite number of times (e.g. Sutton and Barto, 1998, p. 97). 
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 V'[s] ← maxa[ra
s + γ V'[s']] Eq. 13.36

 
It is interesting to see what happens during the succeeding sweeps of dynamic 

programming in this deterministic case, assuming that the initial evaluation estimates are 0 
and that there is only one goal state. The evaluations will start to be updated for the states 
close to the goal state and then progressively for the states more distant from the it. The 
updated evaluations will form a sort of wave front expanding from the goal. The states 
reached by this wave front will immediately assume the correct value. This is equivalent to 
what happens with “activation diffusion planning” (cf. s. 4.5.1). 

13.2.10Asynchronous Dynamic Programming 

One drawback of dynamic programming value iteration is that one sweep requires the 
updating of all the estimates V'π[s]. This method is called “synchronous dynamic 
programming”. It also requires that the updates be done on the basis of the old evaluations. If 
the number of states is very big, this method can require a prohibitive amount of time. Luckily 
there are other approaches that reduce the number of states of which to update the backups. 
Now these approaches are reviewed. 

An approach, “asynchronous dynamic programming”, focuses the backups on few states 
and uses the recent values of other states to execute these backups. This approach is still 
guaranteed to converge if all states are still visited an infinite number of times (Bertsekas, 
1995; Barto et al., 1995). Asynchronous dynamic programming is particularly important 
because it can be mixed with control, i.e. the execution of the actions under the policy. In 
doing so asynchronous dynamic programming can focus on states more frequently visited 
under the effect of the policy, i.e. on states more relevant for control. Notice that, given that a 
model of the environment is available, the execution of the actions selected by the policy can 
be carried out in simulation mode, i.e. through the model itself instead of the real experience. 

13.2.11Trial-Based Real-Time Dynamic Programming and Heuristic Search 

Asynchronous dynamic programming is still not fully satisfying because it still requires that 
the agent visit all the states an infinite number of times. “Trial-based real-time dynamic 
programming” (Barto et al., 1995) is another approach that allows a further focussing of the 
backups while still converging. Its convergence has been demonstrated for the “stochastic 
shortest-path problems” defined as follows (the terminology used for Markov decision 
problems is adopted; when it was not too limiting the problem definition has been restricted to 
simplify its presentation): 
• The problem consists of a set of states S. Some of these states are called “absorbing 

states” (goal states). Any action executed at an absorbing state leads to the same 
absorbing state with probability 1. Any action executed at an absorbing state has reward 
0. Any action executed at a non-goal state leads to a negative non-zero reward (“cost”). 
The discount coefficient is 1. 

• The problem is divided in “trials”. A trial is a finite number of time steps during which 
the agent can pursue the goal. The length of the trial is enough to reach a goal-state from 
any “initial state” (see below). The time limit imposed by trials has an important effect. It 
prevents getting stuck in endless cycles. The length of trials can be extended 
progressively to ensure that it becomes long enough to reach the goals (cf. Barto et al., 
1995). 
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• There is a subset of “start states” from which the agent pursues the goal at the beginning 
of each trial. 

• A subset of states named “relevant states” is defined. A relevant state is a state that can be 
reached by the execution of any optimal policy from any possible start state. The states 
that cannot be reached in this way are defined “irrelevant states”. 

Trial-based real-time dynamic programming executes an infinite number of trials from each 
start state of the stochastic shortest-path problem. It concurrently executes control and 
asynchronous dynamic programming updating of the evaluations of the states visited. In 
particular it always executes the backup of the state visited under control, and eventually other 
backups of other states. For each state visited it follows this procedure: 
• Look-ahead. Compute all the possible values Σs'∈S[Pa

ss' (ra
ss' + γ V'π[s'])] that can be 

obtained from the current state s by selecting each of the actions a. 
• Update evaluations' estimates. Backup the current state on the basis of Eq. 13.35. 

Eventually execute backups for other states (e.g. by generating a short look-ahead search 
from the current state). 

• Action selection. Follow the greedy policy with respect to the most recent evaluation 
estimates (ties are resolved randomly). 

A theorem from Barto et al. (1995) asserts that, if applied to a stochastic shortest-path 
problem, trial-based real-time dynamic programming converges to the optimal evaluation 
function and optimal policy on the set of relevant states under the following conditions: (a) 
the initial evaluations of the goals states is 0; (b) the initial evaluations for the non-goal states 
are optimistic (e.g. they are 0). 

Now a bridge between Markov decision processes and heuristic search can be built. This 
can be done very simply by noticing that the three steps of learning real time A* illustrated in 
s. 13.1.2 have a close correspondence with the three steps of trial-based real-time dynamic 
programming just illustrated, in the case this is applied to a deterministic problem. This 
correspondence was first demonstrated by Barto et al. (1995). Cf. s. 3.2 for some critical 
observations on this correspondence. 
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Appendix 3 

13.3 Feed-Forward Architectures and Mixture of Experts Networks 

13.3.1 Feed-Forward Architectures and Error Backpropagation Algorithm 

The error backpropagation algorithm (Rumelhart et al., 1986) is usually used to train a feed-
forward neural network with three layers (or more, see Figure 13.2). 
 

 

 

 

 

 

 

 

Figure 13.2: A feed-forward neural network trained with a back-propagation algorithm. Full circles are 
pass-through units. Empty circles are sigmoidal units or units with other types of transfer functions. 

 
The “input layer” is made up of simple pass-through units, whose activation is denoted by 

xi. The “hidden layer” and the “output layer” are made up of units whose activation is 
respectively: 

 
 yj = f[pj] = f[Σi[wji  xi]]           and          vq = f[pq] = f[Σj[wqj  yj]] Eq. 13.37
 

where yj is the activation of the hidden unit j, pj is the “activation potential” of the hidden unit 
j, wji is the weight between the input unit i and the hidden unit j, vq is the activation of the 
output unit q, pq is the activation potential of the output unit q, and wqj is the weight between 
the hidden unit j and the output unit q. f[.] is the “transfer function” of the units, for example a 
linear function or the sigmoidal function σ[.]: 

 
 σ[p] = 1 / (1 + exp[-p]) Eq. 13.38

 
The error back-propagation algorithm updates the weights so that the network 

approximates a function for which some input and output patterns are known (“training set”). 
Let xk be the input pattern (vector of real numbers) and vd

k the output pattern (“teaching 
output”) of the element k of the training set. 
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At the beginning the weights of the network are set randomly within a small interval. The 
idea of the learning algorithm is that the weights should be changed in correspondence to a 
given input pattern xk of the training set, in order to diminish the distance between the output 
pattern returned by the network, vk, and the teaching output vd

k. For each training element k 
an error Ek is defined as follows (for simplicity the index k for the network's elements is 
omitted): 

 
 Ek = 1/2 Σq[(vq - vd

q)2] Eq. 13.39
 

where vd
q is the teaching output for the output unit q. If a weight changes, the error changes. 

In order to decrease the error Ek, the backpropagation algorithm updates each weight in 
proportion to the error's change caused by that weight's change (“hill climbing”). This is done 
by updating the weights in proportion to the partial derivative of the error with respect to the 
weight. The Widrow-Hoff formula (Widrow and Hoff, 1960) is used to update the weights 
wqj: 

 
 ∆wqj= - η (∂Ek/ ∂ wqj ) = - η (vq - vd

q) f'[pq] yj Eq. 13.40
 
where η is a learning rate and f'[.] is the derivative of the transfer function. If the transfer 
function f[.] is the sigmoidal function, then f'[p] = σ'[p] = σ [p] (1 - σ[p]). If f[.] is linear then 
f'[.] = 1 and the formula assumes the following form, called “delta rule”: 

 
 ∆wqj = - η (∂Ek/∂wqj) = - η (vq - vd

q) yj Eq. 13.41
 

To apply the same principle to the weights wji between the input and hidden layer, the 
derivative (∂Ek/∂wji) of the error Ek with respect to the same weights is needed. Assuming an 
the error (yj - yd

j) for the hidden units, if we use the Widrow-Hoff formula to update the 
weights wji we have: 

 
 ∆wji = - η (yj - yd

j) f'[pj] xi Eq. 13.42
 

Given that the error (yj - yd
j) for the hidden units is unknown, it is substituted with the 

derivative of the error Ek with respect to yj: 
 
 ∆wji = - η (∂Ek/∂yj) f'[pj] xi = - η (Σq[(vq - vd

q) f'[pq] wqj]) f'[pj] xi Eq. 13.43
 

13.3.2 Mixture of Experts Neural Networks 

Mixture of experts neural networks (Jacobs et al., 1991; Haykin, 1998) are networks with a 
modular architecture based on a set of “expert networks” and a “gating network”, and trained 
with a supervised learning algorithm. A simple example of these networks is presented in 
Figure 13.3. For simplicity the experts of this architecture have no hidden layer and only one 
output unit, but in general they can have any kind of feed-forward architecture and any 
number of output units. The idea at the basis of this kind of networks is that during training 
each expert should specialise on a sub-region of the input-output space, while the gating 
network should learn to decide which expert is competent for which sub-region. 

The gating network has a number of output-units equal to the number of experts. The 
output units of the experts, vk, and the gating network's output units, ok, are linear: 
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 vk = Σj[wkj yj]               ok = Σj[zkj yj] Eq. 13.44
 

where yj is the activation of the input unit j, wkj is the weight of the expert k and input unit j, 
and zkj is weight of the gating network's output unit k and input unit j. The output V of the 
whole network is calculated by “mixing” the output of the experts as follow: 

 
 V = Σk[vk gk] Eq. 13.45

 
where gk is a transformation of the gating network's output unit k. In particular gk is computed 
through the “softmax activation function” on the basis of ok, as follows: 

 
 gk = exp[ok]/Σf[exp[of]]                        where: Σk gk = 1 Eq. 13.46

 

 

 

 

 

 

 

 

 

 

Figure 13.3: Example of architecture of a mixture of experts 
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In order to train the network, each expert is though

instead of a deterministic one. In particular it is assum
probability distribution centred on vk. On the basis of this
on the input y and expert's weights wk, it is possible to
desired output vd: 

 
 l[vd | wk, y] = (1/(2π)1/2) exp[-1/2 (v
 
The logarithmic likelihood (the logarithm simplifies 

the distribution of the output of the whole network is: 
 
 L[vd | w, z, y] = ln l[vd | w, z, y] = ln[Σk[gk (1/(2π)1/2
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compute how this likelihood changes when the weights of the experts and the gating network 
change (gradients): 
 

 ∂L/∂wk = hk (vd - vk) y                    ∂L/∂zk = (hk - gk) y Eq. 13.49
 
 
where hk, named “a posteriori probabilities”, are defined as follows: 

 
 hk = (gk exp[-1/2 (vd - vk)2]) / (Σf[gf exp[-1/2 (vd - vf)2]]) Eq. 13.50

 
Similarly to what has been done for the backpropagation algorithm, the gradients can be 

used to iteratively adjust the weights to increase the likelihood of producing the desired output 
(“hill climbing”): 

 
 ∆wk = η hk (vd - vk) y                ∆zk = ζ (hk - gk) y Eq. 13.51
 

where η and ζ are learning parameters. 

13.3.3 The Generalisation Property of Neural Networks 

Neural networks are capable of generalisation. This means that they can produce appropriate 
outputs if presented with input patterns never seen before, but similar to some patterns with 
which they have been trained (Hinton et al., 1986; Rolls and Treves, 1998, p. 198, p. 29). 
Generally speaking, the generalisation property of neural networks is caused by the fact that 
when the weights are updated to improve an input-output association, these changes influence 
other input-output associations, possibly improving similar input-output associations in terms 
of error. 

Closely related to the generalisation capacity is the capacity to isolate “common 
structure” underlying different “problems” (cf. McClelland et al., 1995) and to compress 
information into the same weights. Here a “problem” is intended as a particular set of input-
output associations to learn. “Common structure” is any correlation that may exist between 
the input-output associations of one problem and the input-output associations of another 
problem. If some of these correlations are present, it means that the whole set of associations 
is partially redundant and that it is possible to store it in a compressed form. This is precisely 
what neural networks do when they are repeatedly trained on the same input-output sets of 
associations (cf. Elman and Plunkett., 1997). 
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14 References 

14.1 Candidate's Publications During the PhD Research 

The research carried out during the three years of PhD study has led to the production of the 
published papers listed below. The papers that present simulations and results substantially 
different from the ones presented in this thesis are marked with an asterisk * or with a double 
asterisk **. 

The papers marked with one asterisk refer to a piece of research that the author has done 
at the beginning of the PhD before focussing on planning. This research has investigated 
“cultural evolution in multi-agent systems”, and has been carried out by using reinforcement 
learning, genetic algorithms (Mitchell, 1996) and imitation (the latter has been simulated 
through the error backpropagation algorithm, Rumelhart et al., 1986). The publications 
marked with a double asterisk have investigated the biological aspects of some models 
presented in the thesis. Both pieces of research have not been included in the thesis because 
they are too heterogeneous with respect to the topic of planning. 
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