Cognition in Action

The Cognition in Action (CONAN) Lab is an interdisciplinary group that studies cognitive processing in humans and animals by combining experimental studies with computational modeling and cognitive robotics.

Our primary research areas are: computational / theoretical neuroscience and cognitive / experimental psychology. Our main research topics are: 1) goal-directed decision-making, 2) social interaction and joint action, 3) the grounding of higher cognitive skills in sensorimotor prediction, and 4) probabilistic models of brain and cognition. 

Giovanni Pezzulo..


Main research areas:

 1. Goal-directed decision-making and planning

We study how humans and other animals make decisions and plan, especially in complex and ecologically valid situations full of action choices. To this aim, we perform experiments on human and animal decision-making and we develop computational models, mainly within the framework of probabilistic (Bayesian) inference.

We developed novel theories of goal-directed choice and planning that emphasize the roles of prediction and internal models (aka model-based control and active inference) and the interplay of decision and action dynamics during situated decisions (aka embodied choice).

Key publications:

- Iodice, P., Ferrante, C., Brunetti, L., Cabib, S., Protasi, F., Walton, M., Pezzulo, G. (2017) Fatigue modulates dopamine availability and promotes flexible choice reversals during decision-making. Scientific Reports 537

- Pezzulo, G., Cisek, P. (2016) Navigating the Affordance Landscape: Feedback Control as a Process Model of Behavior and Cognition. Trends in Cognitive Sciences, 20(6), 414-424

- Stoianov, I., Genovesio, A., Pezzulo, G. (2016) Prefrontal goal-codes emerge as latent states in probabilistic value learning. Journal of Cognitive Neuroscience, 28(1):140-57

- Pezzulo, G., van der Meer, M., Lansink, C., Pennartz, C. (2014) Internally generated sequences in learning and executing goal-directed behavior. Trends in Cognitive Sciences, 18(12), 647-657


2. Social interaction and joint action

We study how human co-actors coordinate their actions in space and time to achieve joint goals, such as building something together or performing team sports. To this aim, we perform experiments on human-human joint action and develop computational models.

We developed novel theories of joint action that emphasize mutual prediction and the exchange of coordination signals (aka sensorimotor communication).

Key publications:

- Pezzulo G., Iodice, P., Donnarumma, F., Dindo, H., Knoblich, G. (2017). Avoiding accidents at

the champagne reception: A study of joint lifting and balancing. Psychological Science, in press

- Candidi, M., Curioni, A., Donnarumma, F., Sacheli, L. M., Pezzulo, G. (2015) Interactional

leader-follower sensorimotor communication strategies during repetitive joint actions. Journal of the Royal Society Interface, 12(110), 20150644 

-Pezzulo, G., Donnarumma, F., and Dindo, H. (2013) Human sensorimotor communication: A

theory of signaling in online social interactions. PLoS ONE, 8(11):e79876.


3) The grounding of higher cognition in sensorimotor prediction

We study the ways human higher cognitive abilities, and especially future oriented abilities such as prospection and imagination, stem from (and are grounded in) sensorimotor skills. In keeping with embodied theories of cognition, we start from the hypothesis that the architecture of motor prediction and control of our earlier evolutionary ancestors was gradually improved to afford prospective functions and cognitive control – and the latter (higher cognitive) abilities retain essential elements of sensorimotor, predictive control. To test this hypothesis, we perform human experiments and develop computational models.

Key publications:

- Pezzulo, G., Kemere, C., and van der Meer, M. (2017) Internally generated hippocampal sequences as a vantage point to probe future-oriented cognition. Annals of the New York Academy of Sciences, in press.

- Pezzulo, G., Rigoli, F., Friston, K. (2015) Active inference, homeostatic regulation and adaptive behavioural control. Progress in Neurobiology, 134:17–35.

- Lepora, N. F., Pezzulo, G. (2015) Embodied choice: how action influences perceptual decision making. PLoS Computational Biology, 11(4):e1004110, 2015.


4) Probabilistic models of brain and cognition

We develop novel computational models of brain and cognition, usually within the framework of probabilistic (Bayesian) inference and generative models. We proposed novel computational approaches to a variety of cognitive abilities, including perception, decision, planning and learning. In turn, these models offer empirical predictions that we test experimentally.

Key publications:

- Donnarumma, F., Costantini, M., Ambrosini, E., Friston, K., Pezzulo, G. (2017) Action perception as hypothesis testing. Cortex in press

- Friston, K., FitzGerald, T., Rigoli, F., Schwartenbeck, P., O’Doherty, J., Pezzulo, G. (2016)

Active inference and learning. Neuroscience & Biobehavioral Reviews, 68: 862-879.

- Friston, K., FitzGerald, T., Rigoli, F., Schwartenbeck, P., Pezzulo, G. (2016) Active inference:

A process theory. Neural Computation, 29(1): 1-49.



Giovanni Pezzulo.






No results. Please change your search criteria above.